Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol ; 185(4): 1374-1380, 2021 04 23.
Article in English | MEDLINE | ID: mdl-33793906

ABSTRACT

The lifestyle of parasitic plants is associated with peculiar morphological, genetic, and physiological adaptations that existing online plant-specific resources fail to adequately represent. Here, we introduce the Web Application for the Research of Parasitic Plants (WARPP) as an online resource dedicated to advancing research and development of parasitic plant biology. WARPP is a framework to facilitate international efforts by providing a central hub of curated evolutionary, ecological, and genetic data. The first version of WARPP provides a community hub for researchers to test this web application, for which curated data revolving around the economically important Broomrape family (Orobanchaceae) is readily accessible. The initial set of WARPP online tools includes a genome browser that centralizes genomic information for sequenced parasitic plant genomes, an orthogroup summary detailing the presence and absence of orthologous genes in parasites compared with nonparasitic plants, and an ancestral trait explorer showing the evolution of life-history preferences along phylogenies. WARPP represents a project under active development and relies on the scientific community to populate the web app's database and further the development of new analysis tools. The first version of WARPP can be securely accessed at https://parasiticplants.app. The source code is licensed under GNU GPLv2 and is available at https://github.com/wickeLab/WARPP.


Subject(s)
Base Sequence , Genome, Plant , Orobanchaceae/genetics , Orobanchaceae/physiology , Orobanchaceae/parasitology , Phylogeny , Web Browser , Genomics , Software
2.
BMC Bioinformatics ; 20(1): 402, 2019 Jul 22.
Article in English | MEDLINE | ID: mdl-31331268

ABSTRACT

BACKGROUND: Today a variety of phylogenetic file formats exists, some of which are well-established but limited in their data model, while other more recently introduced ones offer advanced features for metadata representation. Although most currently available software only supports the classical formats with a limited metadata model, it would be desirable to have support for the more advanced formats. This is necessary for users to produce richly annotated data that can be efficiently reused and make underlying workflows easily reproducible. A programming library that abstracts over the data and metadata models of the different formats and allows supporting all of them in one step would significantly simplify the development of new and the extension of existing software to address the need for better metadata annotation. RESULTS: We developed the Java library JPhyloIO, which allows event-based reading and writing of the most common alignment and tree/network formats. It allows full access to all features of the nine currently supported formats. By implementing a single JPhyloIO-based reader and writer, application developers can support all of these formats. Due to the event-based architecture, JPhyloIO can be combined with any application data structure, and is memory efficient for large datasets. JPhyloIO is distributed under LGPL. Detailed documentation and example applications (available on http://bioinfweb.info/JPhyloIO/ ) significantly lower the entry barrier for bioinformaticians who wish to benefit from JPhyloIO's features in their own software. CONCLUSION: JPhyloIO enables simplified development of new and extension of existing applications that support various standard formats simultaneously. This has the potential to improve interoperability between phylogenetic software tools and at the same time motivate usage of more recent metadata-rich formats such as NeXML or phyloXML.


Subject(s)
Phylogeny , Programming Languages , Software , User-Computer Interface , Writing , Documentation , Metadata
SELECTION OF CITATIONS
SEARCH DETAIL
...