Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol Evol ; 13(2)2021 02 03.
Article in English | MEDLINE | ID: mdl-33587128

ABSTRACT

Malate transport shuttles atmospheric carbon into the Calvin-Benson cycle during NADP-ME C4 photosynthesis. Previous characterizations of several plant dicarboxylate transporters (DCT) showed that they efficiently exchange malate across membranes. Here, we identify and characterize a previously unknown member of the DCT family, DCT4, in Sorghum bicolor. We show that SbDCT4 exchanges malate across membranes and its expression pattern is consistent with a role in malate transport during C4 photosynthesis. SbDCT4 is not syntenic to the characterized photosynthetic gene ZmDCT2, and an ortholog is not detectable in the maize reference genome. We found that the expression patterns of DCT family genes in the leaves of Zea mays, and S. bicolor varied by cell type. Our results suggest that subfunctionalization, of members of the DCT family, for the transport of malate into the bundle sheath plastids, occurred during the process of independent recurrent evolution of C4 photosynthesis in grasses of the PACMAD clade. We also show that this subfunctionalization is lineage independent. Our results challenge the dogma that key C4 genes must be orthologues of one another among C4 species, and shed new light on the evolution of C4 photosynthesis.


Subject(s)
Dicarboxylic Acid Transporters/metabolism , Plant Proteins/metabolism , Sorghum/metabolism , Dicarboxylic Acid Transporters/classification , Dicarboxylic Acid Transporters/genetics , Genes, Plant , Malates/metabolism , Multigene Family , Phylogeny , Plant Proteins/classification , Plant Proteins/genetics , Sorghum/genetics
2.
Curr Protoc Plant Biol ; 2(1): 1-21, 2017 Mar.
Article in English | MEDLINE | ID: mdl-31725975

ABSTRACT

Phenotypic measurements and images of crops grown under controlled-environment conditions can be analyzed to compare plant growth and other phenotypes from diverse varieties. Those demonstrating the most favorable phenotypic traits can then be used for crop improvement strategies. This article details a protocol for image-based root and shoot phenotyping of plants grown in the greenhouse to compare traits among different varieties. Diverse maize lines were grown in the greenhouse in large 8-gallon treepots in a clay granule substrate. Replicates of each line were harvested at 4 weeks, 6 weeks, and 8 weeks after planting to capture developmental information. Whole-plant phenotypes include biomass accumulation, ontogeny, architecture, and photosynthetic efficiency of leaves. Image analysis was used to measure leaf surface area and tassel size and to extract shape variance information from complex 3D root architectures. Notably, this framework is extensible to any number of above- or below-ground phenotypes, both morphological and physiological. © 2017 by John Wiley & Sons, Inc.

3.
Nature ; 464(7291): 999-1005, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20393555

ABSTRACT

Massively parallel DNA sequencing technologies provide an unprecedented ability to screen entire genomes for genetic changes associated with tumour progression. Here we describe the genomic analyses of four DNA samples from an African-American patient with basal-like breast cancer: peripheral blood, the primary tumour, a brain metastasis and a xenograft derived from the primary tumour. The metastasis contained two de novo mutations and a large deletion not present in the primary tumour, and was significantly enriched for 20 shared mutations. The xenograft retained all primary tumour mutations and displayed a mutation enrichment pattern that resembled the metastasis. Two overlapping large deletions, encompassing CTNNA1, were present in all three tumour samples. The differential mutation frequencies and structural variation patterns in metastasis and xenograft compared with the primary tumour indicate that secondary tumours may arise from a minority of cells within the primary tumour.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/secondary , Breast Neoplasms/genetics , Genome, Human/genetics , Mutation/genetics , Neoplasm Transplantation , Adult , Breast Neoplasms/pathology , DNA Copy Number Variations/genetics , DNA Mutational Analysis , Disease Progression , Female , Gene Frequency/genetics , Genomics , Humans , Translocation, Genetic/genetics , Transplantation, Heterologous , alpha Catenin/genetics
4.
N Engl J Med ; 361(11): 1058-66, 2009 Sep 10.
Article in English | MEDLINE | ID: mdl-19657110

ABSTRACT

BACKGROUND: The full complement of DNA mutations that are responsible for the pathogenesis of acute myeloid leukemia (AML) is not yet known. METHODS: We used massively parallel DNA sequencing to obtain a very high level of coverage (approximately 98%) of a primary, cytogenetically normal, de novo genome for AML with minimal maturation (AML-M1) and a matched normal skin genome. RESULTS: We identified 12 acquired (somatic) mutations within the coding sequences of genes and 52 somatic point mutations in conserved or regulatory portions of the genome. All mutations appeared to be heterozygous and present in nearly all cells in the tumor sample. Four of the 64 mutations occurred in at least 1 additional AML sample in 188 samples that were tested. Mutations in NRAS and NPM1 had been identified previously in patients with AML, but two other mutations had not been identified. One of these mutations, in the IDH1 gene, was present in 15 of 187 additional AML genomes tested and was strongly associated with normal cytogenetic status; it was present in 13 of 80 cytogenetically normal samples (16%). The other was a nongenic mutation in a genomic region with regulatory potential and conservation in higher mammals; we detected it in one additional AML tumor. The AML genome that we sequenced contains approximately 750 point mutations, of which only a small fraction are likely to be relevant to pathogenesis. CONCLUSIONS: By comparing the sequences of tumor and skin genomes of a patient with AML-M1, we have identified recurring mutations that may be relevant for pathogenesis.


Subject(s)
Isocitrate Dehydrogenase/genetics , Leukemia, Myeloid, Acute/genetics , Mutation , Adult , DNA Mutational Analysis , Female , Gene Frequency , Genome, Human , Humans , Male , Middle Aged , Nucleophosmin , Point Mutation , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...