Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Pharmaceuticals (Basel) ; 17(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38399405

ABSTRACT

The interaction of Neuropilin-1 (NRP-1) with vascular endothelial growth factor (VEGF) has been shown to promote angiogenesis under physiological and pathological conditions. Angiogenesis around tumors is a major factor allowing for their growth and spread. Disrupting NRP-1/VEGF complex formation is thus a promising pathway for the development of new anticancer pharmaceuticals. A large body of work has been produced in the last two decades detailing the development of inhibitors of NRP-1/VEGF complex formation. Among those were peptide A7R and its smaller derivatives KXXR and K(Har)XXR. It has been previously reported that replacement of the XX backbone with triazole residues has a positive effect on the proteolytic stability of inhibitors. It has also been reported that a higher dihedral angle range restriction of the XX backbone has a positive effect on the activity of inhibitors. In this work, we have designed new triazole derivatives of K(Har)XXR inhibitors with substitution allowing for higher range restriction of the XX backbone. The obtained peptidomimetics have greater activity than their less restricted counterparts. One of the newly obtained structures has greater affinity than the reference peptide A7R.

2.
Biomolecules ; 12(6)2022 06 07.
Article in English | MEDLINE | ID: mdl-35740918

ABSTRACT

A conserved, 26-residue sequence [AA(X2)[A/G][G/L](X2)GDV[I/L](X2)[V/L]NGE(X1)V(X6)] and corresponding structure repeating module were identified within the HtrA protease family using a non-redundant set (N = 20) of publicly available structures. While the repeats themselves were far from sequence perfect, they had notable conservation to a statistically significant level. Three or more repetitions were identified within each protein despite being statistically expected to randomly occur only once per 1031 residues. This sequence repeat was associated with a six stranded antiparallel ß-barrel module, two of which are present in the core of the structures of the PA clan of serine proteases, while a modified version of this module could be identified in the PDZ-like domains. Automated structural alignment methods had difficulties in superimposing these ß-barrels, but the use of a target human HtrA2 structure showed that these modules had an average RMSD across the set of structures of less than 2 Å (mean and median). Our findings support Dayhoff's hypothesis that complex proteins arose through duplication of simpler peptide motifs and domains.


Subject(s)
Serine Endopeptidases , Serine Proteases , Humans , Peptides/chemistry , Serine Endopeptidases/metabolism , Serine Proteases/chemistry , Serine Proteases/genetics
3.
Molecules ; 26(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34641321

ABSTRACT

Chondrocalcinosis is a metabolic disease caused by the presence of calcium pyrophosphate dihydrate crystals in the synovial fluid. The goal of our endeavor was to find out whether short peptides could be used as a dissolving factor for such crystals. In order to identify peptides able to dissolve crystals of calcium pyrophosphate, we screened through a random library of peptides using a phage display. The first screening was designed to select phages able to bind the acidic part of alendronic acid (pyrophosphate analog). The second was a catalytic assay in the presence of crystals. The best-performing peptides were subsequently chemically synthesized and rechecked for catalytic properties. One peptide, named R25, turned out to possess some hydrolytic activity toward crystals. Its catalysis is Mg2+-dependent and also works against soluble species of pyrophosphate.


Subject(s)
Calcium Pyrophosphate/chemistry , Peptides/pharmacology , Alendronate , Hydrolysis , Models, Molecular , Molecular Dynamics Simulation , Peptide Library , Peptides/analysis , Peptides/chemistry
4.
Life (Basel) ; 10(7)2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32630714

ABSTRACT

All life on Earth uses one universal biochemistry stemming from one universal common ancestor of all known living organisms. One of the most striking features of this universal biochemistry is its utter dependence on phosphate group transfer between biochemical molecules. Both nucleic acid and peptide biological synthesis relies heavily on phosphate group transfer. Such dependents strongly indicate very early incorporation of phosphate chemistry in the origin of life. Perhaps as early as prebiotic soup stage. We report here on a short cyclic peptide, c(RPDDHR), designed rationally for pyrophosphate interaction, which is able to create a new amide bond dependent on the presence of pyrophosphate. We believe this result to be a first step in the exploration of Phosphate Transfer Catalysts that must have been present and active in prebiotic soup and must have laid down foundations for the universal bioenergetics.

5.
Molecules ; 24(9)2019 May 06.
Article in English | MEDLINE | ID: mdl-31064153

ABSTRACT

Inhibiting the interaction of neuropilin-1 (NRP-1) with vascular endothelial growth factor (VEGF) has become an interesting mechanism for potential anticancer therapies. In our previous works, we have obtained several submicromolar inhibitors of this interaction, including branched pentapeptides of general structure Lys(Har)-Xxx-Xxx-Arg. With the intent to improve the proteolytic stability of our inhibitors, we turned our attention to 1,4-disubstituted 1,2,3-triazoles as peptide bond isosteres. In the present contribution, we report the synthesis of 23 novel triazolopeptides along with their inhibitory activity. The compounds were synthesized using typical peptide chemistry methods, but with a conversion of amine into azide completely on solid support. The inhibitory activity of the synthesized derivatives spans from 9.2% to 58.1% at 10 µM concentration (the best compound Lys(Har)-GlyΨ[Trl]GlyΨ[Trl]Arg, 3, IC50 = 8.39 µM). Synthesized peptidotriazoles were tested for stability in human plasma and showed remarkable resistance toward proteolysis, with half-life times far exceeding 48 h. In vitro cell survival test resulted in no significant impact on bone marrow derived murine cells 32D viability. By means of molecular dynamics, we were able to propose a binding mode for compound 3 and discuss the observed structure-activity relationships.


Subject(s)
Angiogenesis Inhibitors/chemistry , Neuropilin-1/antagonists & inhibitors , Peptides/chemistry , Triazoles/chemistry , Vascular Endothelial Growth Factors/antagonists & inhibitors , Amino Acid Sequence , Amino Acids/chemistry , Angiogenesis Inhibitors/pharmacology , Animals , Bone Marrow Cells , Cell Survival/drug effects , Chromatography, High Pressure Liquid/methods , Click Chemistry/methods , Humans , Mice , Molecular Dynamics Simulation , Molecular Structure , Peptides/pharmacology , Protein Binding , Proteolysis , Solid-Phase Synthesis Techniques/methods , Structure-Activity Relationship , Tandem Mass Spectrometry/methods , Triazoles/pharmacology
6.
Life (Basel) ; 7(2)2017 Apr 09.
Article in English | MEDLINE | ID: mdl-28397774

ABSTRACT

Catalysis is an essential feature of living systems biochemistry, and probably, it played a key role in primordial times, helping to produce more complex molecules from simple ones. However, enzymes, the biocatalysts par excellence, were not available in such an ancient context, and so, instead, small molecule catalysis (organocatalysis) may have occurred. The best candidates for the role of primitive organocatalysts are amino acids and short random peptides, which are believed to have been available in an early period on Earth. In this review, we discuss the occurrence of primordial organocatalysts in the form of peptides, in particular commenting on reports about seryl-histidine dipeptide, which have recently been investigated. Starting from this specific case, we also mention a peptide fragment condensation scenario, as well as other potential roles of peptides in primordial times. The review actually aims to stimulate further investigation on an unexplored field of research, namely one that specifically looks at the catalytic activity of small random peptides with respect to reactions relevant to prebiotic chemistry and early chemical evolution.

7.
Astrobiology ; 17(3): 277-285, 2017 03.
Article in English | MEDLINE | ID: mdl-28277783

ABSTRACT

In this paper, we revisit several issues relevant to origin-of-life research and propose a Phosphate Transfer Catalyst hypothesis that furthers our understanding of some of the key events in prebiotic chemical evolution. In the Phosphate Transfer Catalyst hypothesis, we assume the existence of hypothetical metallopeptides with phosphate transfer activity that use abundant polyphosphates as both substrates and energy sources. Nonspecific catalysis by this phosphate transfer catalyst would provide a variety of different products such as phosphoryl amino acids, nucleosides, polyphosphate nucleotides, nucleic acids, and aminoacylated nucleic acids. Moreover, being an autocatalytic set and metabolic driver at the same time, it could possibly replicate itself and produce a collective system of two polymerases; a nucleic acid able to catalyze peptide bond formation and a peptide able to polymerize nucleic acids. The genetic code starts at first as a system that reduces the energy barrier by bringing substrates (2'/3' aminoacyl-nucleotides) together, an ancestral form of the catalysis performed by modern ribosomes. Key Words: Origin of life-Prebiotic chemistry-Catalysis-Nucleic acids. Astrobiology 17, 277-285.


Subject(s)
Origin of Life , Phosphates/chemistry , Catalysis , Models, Theoretical , Nucleic Acids/chemistry , Peptides/chemistry
8.
Bioconjug Chem ; 25(9): 1678-88, 2014 Sep 17.
Article in English | MEDLINE | ID: mdl-25144926

ABSTRACT

The surface functionalization of fatty acid vesicles will allow their use as nanoreactors for complex chemistry. In this report, the tethering of several DNA conjugates to decanoic acid vesicles for molecular recognition and synthetic purposes was explored. Due to the highly dynamic nature of these structures, only one novel bola-amphiphile DNA conjugate could interact efficiently with or spontaneously pierce into the vesicle bilayers without jeopardizing their self-assembly or stability. This molecule was synthesized via a Cu(I)-catalyzed [3 + 2] azide-alkyne cycloaddition (click reaction), and consists of a single hydrocarbon chain of 20 carbons having on one end a triazole group linked to the 5'-phosphate of the nucleic acid and on the other side a hydroxyl-group. Its insertion was so effective that a fluorescent label on the DNA complementary to the conjugate could be used to visualize fatty acid structures.


Subject(s)
DNA/chemistry , Decanoic Acids/chemistry , Furans/chemistry , Pyridones/chemistry , Alkynes/chemistry , Azides/chemistry , Catalysis , Click Chemistry , Copper/chemistry , Fluorescent Dyes/chemistry , Hydrophobic and Hydrophilic Interactions , Membranes, Artificial
9.
Comput Struct Biotechnol J ; 9: e201402004, 2014.
Article in English | MEDLINE | ID: mdl-24757502

ABSTRACT

In this mini-review we present some experimental approaches to the important issue in the origin of life, namely the origin of nucleic acids and proteins with specific and functional sequences. The formation of macromolecules on prebiotic Earth faces practical and conceptual difficulties. From the chemical viewpoint, macromolecules are formed by chemical pathways leading to the condensation of building blocks (amino acids, or nucleotides) in long-chain copolymers (proteins and nucleic acids, respectively). The second difficulty deals with a conceptual problem, namely with the emergence of specific sequences among a vast array of possible ones, the huge "sequence space", leading to the question "why these macromolecules, and not the others?" We have recently addressed these questions by using a chemical synthetic biology approach. In particular, we have tested the catalytic activity of small peptides, like Ser-His, with respect to peptide- and nucleotides-condensation, as a realistic model of primitive organocatalysis. We have also set up a strategy for exploring the sequence space of random proteins and RNAs (the so-called "never born biopolymer" project) with respect to the production of folded structures. Being still far from solved, the main aspects of these "open questions" are discussed here, by commenting on recent results obtained in our groups and by providing a unifying view on the problem and possible solutions. In particular, we propose a general scenario for macromolecule formation via fragment-condensation, as a scheme for the emergence of specific sequences based on molecular growth and selection.

10.
Chembiochem ; 14(2): 217-23, 2013 Jan 21.
Article in English | MEDLINE | ID: mdl-23255284

ABSTRACT

A new scenario for prebiotic formation of nucleic acid oligomers is presented. Peptide catalysis is applied to achieve condensation of activated RNA monomers into short RNA chains. As catalysts, L-dipeptides containing a histidine residue, primarily Ser-His, were used. Reactions were carried out in self-organised environment, a water-ice eutectic phase, with low concentrations of reactants. Incubation periods up to 30 days resulted in the formation of short oligomers of RNA. During the oligomerisation, an active intermediate (dipeptide-mononucleotide) is produced, which is the reactive species. Details of the mechanism and kinetics, which were elucidated with a set of control experiments, further establish that the imidazole side chain of a histidine at the carboxyl end of the dipeptide plays a crucial role in the catalysis. These results suggest that this oligomerisation catalysis occurs by a transamination mechanism. Because peptides are much more likely products of spontaneous condensation than nucleotide chains, their potential as catalysts for the formation of RNA is interesting from the origin-of-life perspective. Finally, the formation of the dipeptide-mononucleotide intermediate and its significance for catalysis might also be viewed as the tell-tale signs of a new example of organocatalysis.


Subject(s)
Dipeptides/chemistry , Origin of Life , RNA/chemical synthesis , Ribonucleotides/chemistry , Catalysis , Ice/analysis , Kinetics
11.
Orig Life Evol Biosph ; 42(5): 445-50; discussion 451-2, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23132761

Subject(s)
Prebiotics , Ecology
12.
FEBS Lett ; 583(1): 153-6, 2009 Jan 05.
Article in English | MEDLINE | ID: mdl-19071124

ABSTRACT

The dipeptide seryl-histidine (Ser-His) catalyses the condensation of esters of amino acids, peptide fragments, and peptide nucleic acid (PNA) building blocks, bringing to the formation of peptide bonds. Di-, tri- or tetra-peptides can be formed with yields that vary from 0.5% to 60% depending on the nature of the substrate and on the conditions. Other simpler peptides as Gly-Gly, or Gly-Gly-Gly are also effective, although less efficiently. We discuss the results from the viewpoint of primitive chemistry and the origin of long macromolecules by stepwise fragment condensations.


Subject(s)
Dipeptides/chemistry , Peptide Nucleic Acids/chemical synthesis , Peptides/chemical synthesis , Catalysis
13.
Biochim Biophys Acta ; 1777(7-8): 651-9, 2008.
Article in English | MEDLINE | ID: mdl-18515063

ABSTRACT

In this work we provide evidence for the potential presence of a potassium channel in skeletal muscle mitochondria. In isolated rat skeletal muscle mitochondria, Ca(2+) was able to depolarize the mitochondrial inner membrane and stimulate respiration in a strictly potassium-dependent manner. These potassium-specific effects of Ca(2+) were completely abolished by 200 nM charybdotoxin or 50 nM iberiotoxin, which are well-known inhibitors of large conductance, calcium-activated potassium channels (BK(Ca) channel). Furthermore, NS1619, a BK(Ca)-channel opener, mimicked the potassium-specific effects of calcium on respiration and mitochondrial membrane potential. In agreement with these functional data, light and electron microscopy, planar lipid bilayer reconstruction and immunological studies identified the BK(Ca) channel to be preferentially located in the inner mitochondrial membrane of rat skeletal muscle fibers. We propose that activation of mitochondrial K(+) transport by opening of the BK(Ca) channel may be important for myoprotection since the channel opener NS1619 protected the myoblast cell line C2C12 against oxidative injury.


Subject(s)
Calcium/pharmacology , Mitochondria, Muscle/physiology , Muscle, Skeletal/physiology , Potassium Channels/physiology , Submitochondrial Particles/physiology , Animals , Benzimidazoles/pharmacology , Cell Line , Charybdotoxin/pharmacology , Intracellular Membranes/drug effects , Intracellular Membranes/physiology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mitochondria, Muscle/drug effects , Potassium Channels/drug effects , Rats , Submitochondrial Particles/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...