Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Article in German | MEDLINE | ID: mdl-38753022

ABSTRACT

The interoperability Working Group of the Medical Informatics Initiative (MII) is the platform for the coordination of overarching procedures, data structures, and interfaces between the data integration centers (DIC) of the university hospitals and national and international interoperability committees. The goal is the joint content-related and technical design of a distributed infrastructure for the secondary use of healthcare data that can be used via the Research Data Portal for Health. Important general conditions are data privacy and IT security for the use of health data in biomedical research. To this end, suitable methods are used in dedicated task forces to enable procedural, syntactic, and semantic interoperability for data use projects. The MII core dataset was developed as several modules with corresponding information models and implemented using the HL7® FHIR® standard to enable content-related and technical specifications for the interoperable provision of healthcare data through the DIC. International terminologies and consented metadata are used to describe these data in more detail. The overall architecture, including overarching interfaces, implements the methodological and legal requirements for a distributed data use infrastructure, for example, by providing pseudonymized data or by federated analyses. With these results of the Interoperability Working Group, the MII is presenting a future-oriented solution for the exchange and use of healthcare data, the applicability of which goes beyond the purpose of research and can play an essential role in the digital transformation of the healthcare system.


Subject(s)
Health Information Interoperability , Humans , Datasets as Topic , Electronic Health Records , Germany , Health Information Interoperability/standards , Medical Informatics , Medical Record Linkage/methods , Systems Integration
2.
Stud Health Technol Inform ; 307: 243-248, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37697859

ABSTRACT

To provide clinical data in distributed research architectures, a fundamental challenge involves defining and distributing suitable metadata within Metadata Repositories. Especially for structured data, data elements need to be bound against suitable terminologies; otherwise, other systems will only be able to interpret the data with complex and error-prone manual involvement. As current Metadata Repository implementations lack support for querying externally defined terminologies in FHIR terminology servers, we propose an intermediate solution that uses appropriate annotations on metadata elements to allow run-time Terminology Services mediated queries of that metadata. This allows a very clear separation of concerns between the two related systems, greatly simplifying terminological maintenance. The system performed well in a prototypical deployment.


Subject(s)
Metadata
3.
Stud Health Technol Inform ; 302: 707-710, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37203474

ABSTRACT

Interoperability in healthcare cannot be achieved without mapping local data to standardized terminology. In this paper, we investigate the performance of different approaches for implementing HL7 FHIR Terminology Module operations using a benchmarking methodology, to gather evidence on the benefits and pitfalls of these methods in terms of performance from the point-of-view of a terminology client. The approaches perform very differently, while having a local client-side cache for all operations is of supreme importance. The results of our investigation show that careful consideration of the integration environment, potential bottlenecks, and implementation strategies is required.


Subject(s)
Benchmarking , Electronic Health Records , Humans , Delivery of Health Care , Health Facilities , Health Level Seven
4.
J Am Med Inform Assoc ; 30(4): 718-725, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36688534

ABSTRACT

OBJECTIVE: Convert the Medical Information Mart for Intensive Care (MIMIC)-IV database into Health Level 7 Fast Healthcare Interoperability Resources (FHIR). Additionally, generate and publish an openly available demo of the resources, and create a FHIR Implementation Guide to support and clarify the usage of MIMIC-IV on FHIR. MATERIALS AND METHODS: FHIR profiles and terminology system of MIMIC-IV were modeled from the base FHIR R4 resources. Data and terminology were reorganized from the relational structure into FHIR according to the profiles. Resources generated were validated for conformance with the FHIR profiles. Finally, FHIR resources were published as newline delimited JSON files and the profiles were packaged into an implementation guide. RESULTS: The modeling of MIMIC-IV in FHIR resulted in 25 profiles, 2 extensions, 35 ValueSets, and 34 CodeSystems. An implementation guide encompassing the FHIR modeling can be accessed at mimic.mit.edu/fhir/mimic. The generated demo dataset contained 100 patients and over 915 000 resources. The full dataset contained 315 000 patients covering approximately 5 840 000 resources. The final datasets in NDJSON format are accessible on PhysioNet. DISCUSSION: Our work highlights the challenges and benefits of generating a real-world FHIR store. The challenges arise from terminology mapping and profiling modeling decisions. The benefits come from the extensively validated openly accessible data created as a result of the modeling work. CONCLUSION: The newly created MIMIC-IV on FHIR provides one of the first accessible deidentified critical care FHIR datasets. The extensive real-world data found in MIMIC-IV on FHIR will be invaluable for research and the development of healthcare applications.


Subject(s)
Health Level Seven , Information Dissemination , Information Storage and Retrieval , Patients , Information Storage and Retrieval/methods , Information Storage and Retrieval/standards , Humans , Datasets as Topic , Reproducibility of Results , Electronic Health Records , Information Dissemination/methods
5.
Stud Health Technol Inform ; 290: 71-75, 2022 Jun 06.
Article in English | MEDLINE | ID: mdl-35672973

ABSTRACT

The large variability of data models, specifications, and interpretations of data elements is particular to the healthcare domain. Achieving semantic interoperability is the first step to enable reuse of healthcare data. To ensure interoperability, metadata repositories (MDR) are increasingly used to manage data elements on a structural level, while terminology servers (TS) manage the ontologies, terminologies, coding systems and value sets on a semantic level. In practice, however, this strict separation is not always followed; instead, semantical information is stored and maintained directly in the MDR, as a link between both systems is missing. This may be reasonable up to a certain level of complexity, but it quickly reaches its limitations with increasing complexity. The goal of this approach is to combine both components in a compatible manner. We present TermiCron, a synchronization engine that provides synchronized value sets from TS in MDRs, including versioning and annotations. Prototypical results were shown for the terminology server Ontoserver and two established MDR systems. Bridging the semantic and structural gap between the two infrastructure components, this approach enables shared use of metadata and reuse of corresponding health information by establishing a clear separation of the two systems and thus serves to strengthen reuse as well as to increase quality.


Subject(s)
Metadata , Semantics , Delivery of Health Care , Health Facilities
6.
Stud Health Technol Inform ; 294: 362-366, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35612097

ABSTRACT

While HL7 FHIR and its terminology package have seen a rapid uptake by the research community, in no small part due to the wide availability of tooling and resources, there are some areas where tool availability is still lacking. In particular, the comparison of terminological resources, which supports the work of terminologists and implementers alike, has not yet been sufficiently addressed. Hence, we present TerminoDiff, an application to semantically compare FHIR R4 CodeSystem resources. Our tool considers differences across all levels required, i.e. metadata and concept differences, as well as differences in the edge graph, and surfaces them in a visually digestible fashion.


Subject(s)
Electronic Health Records , Semantics , Delivery of Health Care , Drug Packaging , Health Level Seven , Metadata
7.
Stud Health Technol Inform ; 283: 119-126, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34545827

ABSTRACT

With the steady increase in the connectivity of the healthcare system, new requirements and challenges are emerging. In addition to the seamless exchange of data between service providers on a national level, the local legacy data must also meet the new requirements. For this purpose, the applications used must be tested securely and sufficiently. However, the availability of suitable and realistic test data is not always given. Therefore, this study deals with the creation of test data based on real electronic health record data provided by the Medical Information Mart for Intensive Care (MIMIC-IV) database. In addition to converting the data to the current FHIR R4, conversion to the core data sets of the German Medical Informatics Initiative was also presented and made available. The test data was generated to simulate a legacy data transfer. Moreover, four different FHIR servers were tested for performance. This study is the first step toward comparable test scenarios around shared datasets and promotes comparability among providers on a national level.


Subject(s)
Medical Informatics , Delivery of Health Care , Electronic Health Records
8.
Stud Health Technol Inform ; 283: 127-135, 2021 Sep 21.
Article in English | MEDLINE | ID: mdl-34545828

ABSTRACT

To ensure semantic interoperability within healthcare systems, using common, curated terminological systems to identify relevant concepts is of fundamental importance. The HL7 FHIR standard specifies means of modelling terminological systems and appropriate ways of accessing and querying these artefacts within a terminology server. Hence, initiatives towards healthcare interoperability like IHE specify not only software interfaces, but also common codes in the form of value sets and code systems. The way in which these coding tables are provided is not necessarily compatible to the current version of the HL7 FHIR specification and therefore cannot be used with current HL7 FHIR-based terminology servers. This work demonstrates a conversion of terminological resources specified by the Integrating the Healthcare Initiative in the ART-DECOR platform, partly available in HL7 FHIR, to ensure that they can be used within a HL7 FHIR-based terminological server. The approach itself can be used for other terminological resources specified within ART-DECOR but can also be used as the basis for other code-driven conversions of proprietary coding schemes.


Subject(s)
Electronic Health Records , Software , Delivery of Health Care , Health Level Seven
9.
Stud Health Technol Inform ; 281: 68-72, 2021 May 27.
Article in English | MEDLINE | ID: mdl-34042707

ABSTRACT

The current movement in Medical Informatics towards comprehensive Electronic Health Records (EHRs) has enabled a wide range of secondary use cases for this data. However, due to a number of well-justified concerns and barriers, especially with regards to information privacy, access to real medical records by researchers is often not possible, and indeed not always required. An appealing alternative to the use of real patient data is the employment of a generator for realistic, yet synthetic, EHRs. However, we have identified a number of shortcomings in prior works, especially with regards to the adaptability of the projects to the requirements of the German healthcare system. Based on three case studies, we define a non-exhaustive list of requirements for an ideal generator project that can be used in a wide range of localities and settings, to address and enable future work in this regard.


Subject(s)
Electronic Health Records , Medical Informatics , Humans , Privacy
SELECTION OF CITATIONS
SEARCH DETAIL
...