Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 88
Filter
1.
Cell Rep ; 43(3): 113805, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38377000

ABSTRACT

The majority of mitochondrial precursor proteins are imported through the Tom40 ß-barrel channel of the translocase of the outer membrane (TOM). The sorting and assembly machinery (SAM) is essential for ß-barrel membrane protein insertion into the outer membrane and thus required for the assembly of the TOM complex. Here, we demonstrate that the α-helical outer membrane protein Mco6 co-assembles with the mitochondrial distribution and morphology protein Mdm10 as part of the SAM machinery. MCO6 and MDM10 display a negative genetic interaction, and a mco6-mdm10 yeast double mutant displays reduced levels of the TOM complex. Cells lacking Mco6 affect the levels of Mdm10 and show assembly defects of the TOM complex. Thus, this work uncovers a role of the SAMMco6 complex for the biogenesis of the mitochondrial outer membrane.


Subject(s)
Membrane Transport Proteins , Saccharomyces cerevisiae Proteins , Membrane Transport Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Carrier Proteins/metabolism , Protein Transport
2.
Nature ; 621(7979): 627-634, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37527780

ABSTRACT

The presequence translocase of the mitochondrial inner membrane (TIM23) represents the major route for the import of nuclear-encoded proteins into mitochondria1,2. About 60% of more than 1,000 different mitochondrial proteins are synthesized with amino-terminal targeting signals, termed presequences, which form positively charged amphiphilic α-helices3,4. TIM23 sorts the presequence proteins into the inner membrane or matrix. Various views, including regulatory and coupling functions, have been reported on the essential TIM23 subunit Tim17 (refs. 5-7). Here we mapped the interaction of Tim17 with matrix-targeted and inner membrane-sorted preproteins during translocation in the native membrane environment. We show that Tim17 contains conserved negative charges close to the intermembrane space side of the bilayer, which are essential to initiate presequence protein translocation along a distinct transmembrane cavity of Tim17 for both classes of preproteins. The amphiphilic character of mitochondrial presequences directly matches this Tim17-dependent translocation mechanism. This mechanism permits direct lateral release of transmembrane segments of inner membrane-sorted precursors into the inner membrane.


Subject(s)
Mitochondria , Mitochondrial Precursor Protein Import Complex Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Precursor Protein Import Complex Proteins/metabolism , Protein Transport , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism
3.
Mol Cell ; 83(6): 890-910, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36931257

ABSTRACT

Biogenesis of mitochondria requires the import of approximately 1,000 different precursor proteins into and across the mitochondrial membranes. Mitochondria exhibit a wide variety of mechanisms and machineries for the translocation and sorting of precursor proteins. Five major import pathways that transport proteins to their functional intramitochondrial destination have been elucidated; these pathways range from the classical amino-terminal presequence-directed pathway to pathways using internal or even carboxy-terminal targeting signals in the precursors. Recent studies have provided important insights into the structural organization of membrane-embedded preprotein translocases of mitochondria. A comparison of the different translocases reveals the existence of at least three fundamentally different mechanisms: two-pore-translocase, ß-barrel switching, and transport cavities open to the lipid bilayer. In addition, translocases are physically engaged in dynamic interactions with respiratory chain complexes, metabolite transporters, quality control factors, and machineries controlling membrane morphology. Thus, mitochondrial preprotein translocases are integrated into multi-functional networks of mitochondrial and cellular machineries.


Subject(s)
Mitochondria , Mitochondrial Proteins , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Carrier Proteins/metabolism , Protein Transport , Protein Precursors/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Membrane Transport Proteins/metabolism
4.
Nat Struct Mol Biol ; 30(2): 176-187, 2023 02.
Article in English | MEDLINE | ID: mdl-36604501

ABSTRACT

Mitochondrial ß-barrel proteins are essential for the transport of metabolites, ions and proteins. The sorting and assembly machinery (SAM) mediates their folding and membrane insertion. We report the cryo-electron microscopy structure of the yeast SAM complex carrying an early eukaryotic ß-barrel folding intermediate. The lateral gate of Sam50 is wide open and pairs with the last ß-strand (ß-signal) of the substrate-the 19-ß-stranded Tom40 precursor-to form a hybrid barrel in the membrane plane. The Tom40 barrel grows and curves, guided by an extended bridge with Sam50. Tom40's first ß-segment (ß1) penetrates into the nascent barrel, interacting with its inner wall. The Tom40 amino-terminal segment then displaces ß1 to promote its pairing with Tom40's last ß-strand to complete barrel formation with the assistance of Sam37's dynamic α-protrusion. Our study thus reveals a multipoint guidance mechanism for mitochondrial ß-barrel folding.


Subject(s)
Mitochondrial Precursor Protein Import Complex Proteins , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae Proteins/metabolism , Mitochondrial Membrane Transport Proteins/chemistry , Cryoelectron Microscopy , Mitochondria/metabolism , Saccharomyces cerevisiae/metabolism , Mitochondrial Proteins/metabolism
6.
Nature ; 614(7946): 153-159, 2023 02.
Article in English | MEDLINE | ID: mdl-36697829

ABSTRACT

Mitochondria have crucial roles in cellular energetics, metabolism, signalling and quality control1-4. They contain around 1,000 different proteins that often assemble into complexes and supercomplexes such as respiratory complexes and preprotein translocases1,3-7. The composition of the mitochondrial proteome has been characterized1,3,5,6; however, the organization of mitochondrial proteins into stable and dynamic assemblies is poorly understood for major parts of the proteome1,4,7. Here we report quantitative mapping of mitochondrial protein assemblies using high-resolution complexome profiling of more than 90% of the yeast mitochondrial proteome, termed MitCOM. An analysis of the MitCOM dataset resolves >5,200 protein peaks with an average of six peaks per protein and demonstrates a notable complexity of mitochondrial protein assemblies with distinct appearance for respiration, metabolism, biogenesis, dynamics, regulation and redox processes. We detect interactors of the mitochondrial receptor for cytosolic ribosomes, of prohibitin scaffolds and of respiratory complexes. The identification of quality-control factors operating at the mitochondrial protein entry gate reveals pathways for preprotein ubiquitylation, deubiquitylation and degradation. Interactions between the peptidyl-tRNA hydrolase Pth2 and the entry gate led to the elucidation of a constitutive pathway for the removal of preproteins. The MitCOM dataset-which is accessible through an interactive profile viewer-is a comprehensive resource for the identification, organization and interaction of mitochondrial machineries and pathways.


Subject(s)
Fungal Proteins , Mitochondria , Mitochondrial Proteins , Protein Transport , Proteome , Saccharomyces cerevisiae , Carrier Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/metabolism , Proteome/metabolism , Saccharomyces cerevisiae/metabolism , Fungal Proteins/metabolism , Cell Respiration , Ribosomes , Datasets as Topic
7.
Cell Metab ; 33(12): 2464-2483.e18, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34800366

ABSTRACT

Mitochondria are key organelles for cellular energetics, metabolism, signaling, and quality control and have been linked to various diseases. Different views exist on the composition of the human mitochondrial proteome. We classified >8,000 proteins in mitochondrial preparations of human cells and defined a mitochondrial high-confidence proteome of >1,100 proteins (MitoCoP). We identified interactors of translocases, respiratory chain, and ATP synthase assembly factors. The abundance of MitoCoP proteins covers six orders of magnitude and amounts to 7% of the cellular proteome with the chaperones HSP60-HSP10 being the most abundant mitochondrial proteins. MitoCoP dynamics spans three orders of magnitudes, with half-lives from hours to months, and suggests a rapid regulation of biosynthesis and assembly processes. 460 MitoCoP genes are linked to human diseases with a strong prevalence for the central nervous system and metabolism. MitoCoP will provide a high-confidence resource for placing dynamics, functions, and dysfunctions of mitochondria into the cellular context.


Subject(s)
Mitochondria , Proteome , Humans , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Proteome/metabolism
9.
Nature ; 590(7844): 163-169, 2021 02.
Article in English | MEDLINE | ID: mdl-33408415

ABSTRACT

The mitochondrial outer membrane contains so-called ß-barrel proteins, which allow communication between the cytosol and the mitochondrial interior1-3. Insertion of ß-barrel proteins into the outer membrane is mediated by the multisubunit mitochondrial sorting and assembly machinery (SAM, also known as TOB)4-6. Here we use cryo-electron microscopy to determine the structures of two different forms of the yeast SAM complex at a resolution of 2.8-3.2 Å. The dimeric complex contains two copies of the ß-barrel channel protein Sam50-Sam50a and Sam50b-with partially open lateral gates. The peripheral membrane proteins Sam35 and Sam37 cap the Sam50 channels from the cytosolic side, and are crucial for the structural and functional integrity of the dimeric complex. In the second complex, Sam50b is replaced by the ß-barrel protein Mdm10. In cooperation with Sam50a, Sam37 recruits and traps Mdm10 by penetrating the interior of its laterally closed ß-barrel from the cytosolic side. The substrate-loaded SAM complex contains one each of Sam50, Sam35 and Sam37, but neither Mdm10 nor a second Sam50, suggesting that Mdm10 and Sam50b function as placeholders for a ß-barrel substrate released from Sam50a. Our proposed mechanism for dynamic switching of ß-barrel subunits and substrate explains how entire precursor proteins can fold in association with the mitochondrial machinery for ß-barrel assembly.


Subject(s)
Cryoelectron Microscopy , Mitochondria/chemistry , Mitochondria/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Membrane Proteins/ultrastructure , Mitochondria/ultrastructure , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/ultrastructure , Models, Molecular , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/metabolism , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/ultrastructure
10.
Genet Med ; 23(3): 524-533, 2021 03.
Article in English | MEDLINE | ID: mdl-33188300

ABSTRACT

PURPOSE: Dioxygenases are oxidoreductase enzymes with roles in metabolic pathways necessary for aerobic life. 4-hydroxyphenylpyruvate dioxygenase-like protein (HPDL), encoded by HPDL, is an orphan paralogue of 4-hydroxyphenylpyruvate dioxygenase (HPD), an iron-dependent dioxygenase involved in tyrosine catabolism. The function and association of HPDL with human diseases remain unknown. METHODS: We applied exome sequencing in a cohort of over 10,000 individuals with neurodevelopmental diseases. Effects of HPDL loss were investigated in vitro and in vivo, and through mass spectrometry analysis. Evolutionary analysis was performed to investigate the potential functional separation of HPDL from HPD. RESULTS: We identified biallelic variants in HPDL in eight families displaying recessive inheritance. Knockout mice closely phenocopied humans and showed evidence of apoptosis in multiple cellular lineages within the cerebral cortex. HPDL is a single-exonic gene that likely arose from a retrotransposition event at the base of the tetrapod lineage, and unlike HPD, HPDL is mitochondria-localized. Metabolic profiling of HPDL mutant cells and mice showed no evidence of altered tyrosine metabolites, but rather notable accumulations in other metabolic pathways. CONCLUSION: The mitochondrial localization, along with its disrupted metabolic profile, suggests HPDL loss in humans links to a unique neurometabolic mitochondrial infantile neurodegenerative condition.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Dioxygenases , 4-Hydroxyphenylpyruvate Dioxygenase/genetics , Animals , Exons , Humans , Mice , Mice, Knockout , Phenotype
11.
BMC Biol ; 18(1): 2, 2020 01 06.
Article in English | MEDLINE | ID: mdl-31907035

ABSTRACT

BACKGROUND: The mitochondrial pyruvate carrier (MPC) plays a central role in energy metabolism by transporting pyruvate across the inner mitochondrial membrane. Its heterodimeric composition and homology to SWEET and semiSWEET transporters set the MPC apart from the canonical mitochondrial carrier family (named MCF or SLC25). The import of the canonical carriers is mediated by the carrier translocase of the inner membrane (TIM22) pathway and is dependent on their structure, which features an even number of transmembrane segments and both termini in the intermembrane space. The import pathway of MPC proteins has not been elucidated. The odd number of transmembrane segments and positioning of the N-terminus in the matrix argues against an import via the TIM22 carrier pathway but favors an import via the flexible presequence pathway. RESULTS: Here, we systematically analyzed the import pathways of Mpc2 and Mpc3 and report that, contrary to an expected import via the flexible presequence pathway, yeast MPC proteins with an odd number of transmembrane segments and matrix-exposed N-terminus are imported by the carrier pathway, using the receptor Tom70, small TIM chaperones, and the TIM22 complex. The TIM9·10 complex chaperones MPC proteins through the mitochondrial intermembrane space using conserved hydrophobic motifs that are also required for the interaction with canonical carrier proteins. CONCLUSIONS: The carrier pathway can import paired and non-paired transmembrane helices and translocate N-termini to either side of the mitochondrial inner membrane, revealing an unexpected versatility of the mitochondrial import pathway for non-cleavable inner membrane proteins.


Subject(s)
Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Biological Transport
12.
Metabolites ; 9(11)2019 Nov 05.
Article in English | MEDLINE | ID: mdl-31694329

ABSTRACT

Yeast cells respond to heat stress by remodeling their gene expression, resulting in the changes of the corresponding proteins and metabolites. Compared to the intensively investigated transcriptome and proteome, the metabolic response to heat stress is not sufficiently characterized. Mitochondria have been recognized to play an essential role in heat stress tolerance. Given the compartmentalization of the cell, it is not clear if the heat stress-induced metabolic response occurs in mitochondria or in the cytosol. Therefore, a compartment-specific metabolite analysis was performed to analyze the heat stress-induced metabolic response in mitochondria and the cytoplasm. In this work, the isolated mitochondria and the cytoplasm of yeast cells grown at permissive temperature and cells adapting to heat stress were subjected to mass spectrometry-based metabolomics. Over a hundred metabolites could be identified, covering amino acid metabolism, energy metabolism, arginine metabolism, purine and pyrimidine metabolism, and others. Highly accumulated citrulline and reduced arginine suggested remodeled arginine metabolism. A stable isotope-labeled experiment was performed to analyze the heat stress-induced metabolic remodeling of the arginine metabolism, identifying activated de novo ornithine biosynthesis to support arginine and spermidine synthesis. The short-term increased spermidine and trehalose suggest their important roles as heat stress markers. These data provide metabolic clues of heat stress-induced metabolic remodeling, which helps in understanding the heat stress response.

13.
Nature ; 575(7782): 395-401, 2019 11.
Article in English | MEDLINE | ID: mdl-31600774

ABSTRACT

The translocase of the outer mitochondrial membrane (TOM) is the main entry gate for proteins1-4. Here we use cryo-electron microscopy to report the structure of the yeast TOM core complex5-9 at 3.8-Å resolution. The structure reveals the high-resolution architecture of the translocator consisting of two Tom40 ß-barrel channels and α-helical transmembrane subunits, providing insight into critical features that are conserved in all eukaryotes1-3. Each Tom40 ß-barrel is surrounded by small TOM subunits, and tethered by two Tom22 subunits and one phospholipid. The N-terminal extension of Tom40 forms a helix inside the channel; mutational analysis reveals its dual role in early and late steps in the biogenesis of intermembrane-space proteins in cooperation with Tom5. Each Tom40 channel possesses two precursor exit sites. Tom22, Tom40 and Tom7 guide presequence-containing preproteins to the exit in the middle of the dimer, whereas Tom5 and the Tom40 N extension guide preproteins lacking a presequence to the exit at the periphery of the dimer.


Subject(s)
Cryoelectron Microscopy , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/metabolism , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Mitochondria/chemistry , Mitochondrial Membrane Transport Proteins/ultrastructure , Mitochondrial Precursor Protein Import Complex Proteins , Models, Molecular , Phospholipids/metabolism , Protein Multimerization , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/ultrastructure
14.
Nat Rev Mol Cell Biol ; 20(5): 267-284, 2019 05.
Article in English | MEDLINE | ID: mdl-30626975

ABSTRACT

Mitochondria are essential for the viability of eukaryotic cells as they perform crucial functions in bioenergetics, metabolism and signalling and have been associated with numerous diseases. Recent functional and proteomic studies have revealed the remarkable complexity of mitochondrial protein organization. Protein machineries with diverse functions such as protein translocation, respiration, metabolite transport, protein quality control and the control of membrane architecture interact with each other in dynamic networks. In this Review, we discuss the emerging role of the mitochondrial protein import machinery as a key organizer of these mitochondrial protein networks. The preprotein translocases that reside on the mitochondrial membranes not only function during organelle biogenesis to deliver newly synthesized proteins to their final mitochondrial destination but also cooperate with numerous other mitochondrial protein complexes that perform a wide range of functions. Moreover, these protein networks form membrane contact sites, for example, with the endoplasmic reticulum, that are key for integration of mitochondria with cellular function, and defects in protein import can lead to diseases.


Subject(s)
Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/biosynthesis , Signal Transduction/physiology , Animals , Endoplasmic Reticulum/genetics , Humans , Mitochondria/genetics , Mitochondrial Proteins/genetics , Protein Transport/physiology
15.
Cell ; 175(5): 1365-1379.e25, 2018 11 15.
Article in English | MEDLINE | ID: mdl-30445040

ABSTRACT

The exchange of metabolites between the mitochondrial matrix and the cytosol depends on ß-barrel channels in the outer membrane and α-helical carrier proteins in the inner membrane. The essential translocase of the inner membrane (TIM) chaperones escort these proteins through the intermembrane space, but the structural and mechanistic details remain elusive. We have used an integrated structural biology approach to reveal the functional principle of TIM chaperones. Multiple clamp-like binding sites hold the mitochondrial membrane proteins in a translocation-competent elongated form, thus mimicking characteristics of co-translational membrane insertion. The bound preprotein undergoes conformational dynamics within the chaperone binding clefts, pointing to a multitude of dynamic local binding events. Mutations in these binding sites cause cell death or growth defects associated with impairment of carrier and ß-barrel protein biogenesis. Our work reveals how a single mitochondrial "transfer-chaperone" system is able to guide α-helical and ß-barrel membrane proteins in a "nascent chain-like" conformation through a ribosome-free compartment.


Subject(s)
Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Molecular Chaperones/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Amino Acid Sequence , Binding Sites , Intracellular Membranes/metabolism , Mitochondrial Membrane Transport Proteins/chemistry , Mitochondrial Membrane Transport Proteins/genetics , Molecular Dynamics Simulation , Mutagenesis, Site-Directed , Protein Binding , Protein Domains , Protein Precursors/chemistry , Protein Precursors/metabolism , Protein Structure, Secondary , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Sequence Alignment
16.
Anal Chem ; 90(17): 10501-10509, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30102515

ABSTRACT

Knowledge about the functions of individual proteins on a system-wide level is crucial to fully understand molecular mechanisms underlying cellular processes. A considerable part of the proteome across all organisms is still poorly characterized. Mass spectrometry is an efficient technology for the global study of proteins. One of the most prominent methods for accurate proteome-wide comparative quantification is stable isotope labeling by amino acids in cell culture (SILAC). However, application of SILAC to prototrophic organisms such as Saccharomyces cerevisiae, also known as baker's yeast, is compromised since they are able to synthesize all amino acids on their own. Here, we describe an advanced strategy, termed 2nSILAC, that allows for in vivo labeling of prototrophic baker's yeast using heavy arginine and lysine under fermentable and respiratory growth conditions, making it a suitable tool for the global study of protein functions. This generic 2nSILAC strategy allows for directly using and systematically screening yeast mutant strain collections available to the scientific community. We exemplarily demonstrate its high potential by analyzing the effects of mitochondrial gene deletions in mitochondrial fractions using quantitative mass spectrometry revealing the role of Coi1 for the assembly of cytochrome c oxidase (respiratory chain complex IV).


Subject(s)
Amino Acids/metabolism , Isotope Labeling , Proteomics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Gene Deletion , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics
17.
PLoS Biol ; 16(8): e2005651, 2018 08.
Article in English | MEDLINE | ID: mdl-30080851

ABSTRACT

Cilia are organelles specialized in movement and signal transduction. The ciliary transient receptor potential ion channel polycystin-2 (TRPP2) controls elementary cilia-mediated physiological functions ranging from male fertility and kidney development to left-right patterning. However, the molecular components translating TRPP2 channel-mediated Ca2+ signals into respective physiological functions are unknown. Here, we show that the Ca2+-regulated mitochondrial ATP-Mg/Pi solute carrier 25 A 25 (SLC25A25) acts downstream of TRPP2 in an evolutionarily conserved metabolic signaling pathway. We identify SLC25A25 as an essential component in this cilia-dependent pathway using a genome-wide forward genetic screen in Drosophila melanogaster, followed by a targeted analysis of SLC25A25 function in zebrafish left-right patterning. Our data suggest that TRPP2 ion channels regulate mitochondrial SLC25A25 transporters via Ca2+ establishing an evolutionarily conserved molecular link between ciliary signaling and mitochondrial metabolism.


Subject(s)
Amino Acid Transport Systems, Acidic/metabolism , Calcium-Binding Proteins/metabolism , Cilia/metabolism , TRPP Cation Channels/metabolism , Animals , Antiporters/metabolism , Calcium/metabolism , Calcium Channels/metabolism , Drosophila melanogaster/metabolism , Heterozygote , Humans , Ion Channels/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/metabolism , Signal Transduction , Zebrafish
18.
Metabolomics ; 14(5): 59, 2018.
Article in English | MEDLINE | ID: mdl-29628813

ABSTRACT

INTRODUCTION: Subcellular compartmentalization enables eukaryotic cells to carry out different reactions at the same time, resulting in different metabolite pools in the subcellular compartments. Thus, mutations affecting the mitochondrial energy metabolism could cause different metabolic alterations in mitochondria compared to the cytoplasm. Given that the metabolite pool in the cytosol is larger than that of other subcellular compartments, metabolic profiling of total cells could miss these compartment-specific metabolic alterations. OBJECTIVES: To reveal compartment-specific metabolic differences, mitochondria and the cytoplasmic fraction of baker's yeast Saccharomyces cerevisiae were isolated and subjected to metabolic profiling. METHODS: Mitochondria were isolated through differential centrifugation and were analyzed together with the remaining cytoplasm by gas chromatography-mass spectrometry (GC-MS) based metabolic profiling. RESULTS: Seventy-two metabolites were identified, of which eight were found exclusively in mitochondria and sixteen exclusively in the cytoplasm. Based on the metabolic signature of mitochondria and of the cytoplasm, mutants of the succinate dehydrogenase (respiratory chain complex II) and of the FOF1-ATP-synthase (complex V) can be discriminated in both compartments by principal component analysis from wild-type and each other. These mitochondrial oxidative phosphorylation machinery mutants altered not only citric acid cycle related metabolites but also amino acids, fatty acids, purine and pyrimidine intermediates and others. CONCLUSION: By applying metabolomics to isolated mitochondria and the corresponding cytoplasm, compartment-specific metabolic signatures can be identified. This subcellular metabolomics analysis is a powerful tool to study the molecular mechanism of compartment-specific metabolic homeostasis in response to mutations affecting the mitochondrial metabolism.

19.
Mol Biol Cell ; 29(7): 776-785, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29386296

ABSTRACT

Mitochondria are the powerhouses of eukaryotic cells. The activity of the respiratory chain complexes generates a proton gradient across the inner membrane, which is used by the F1FO-ATP synthase to produce ATP for cellular metabolism. In baker's yeast, Saccharomyces cerevisiae, the cytochrome bc1 complex (complex III) and cytochrome c oxidase (complex IV) associate in respiratory chain supercomplexes. Iron-sulfur clusters (ISC) form reactive centers of respiratory chain complexes. The assembly of ISC occurs in the mitochondrial matrix and is essential for cell viability. The cysteine desulfurase Nfs1 provides sulfur for ISC assembly and forms with partner proteins the ISC-biogenesis desulfurase complex (ISD complex). Here, we report an unexpected interaction of the active ISD complex with the cytochrome bc1 complex and cytochrome c oxidase. The individual deletion of complex III or complex IV blocks the association of the ISD complex with respiratory chain components. We conclude that the ISD complex binds selectively to respiratory chain supercomplexes. We propose that this molecular link contributes to coordination of iron-sulfur cluster formation with respiratory activity.

20.
Science ; 359(6373)2018 01 19.
Article in English | MEDLINE | ID: mdl-29348211

ABSTRACT

The biogenesis of mitochondria, chloroplasts, and Gram-negative bacteria requires the insertion of ß-barrel proteins into the outer membranes. Homologous Omp85 proteins are essential for membrane insertion of ß-barrel precursors. It is unknown if precursors are threaded through the Omp85-channel interior and exit laterally or if they are translocated into the membrane at the Omp85-lipid interface. We have mapped the interaction of a precursor in transit with the mitochondrial Omp85-channel Sam50 in the native membrane environment. The precursor is translocated into the channel interior, interacts with an internal loop, and inserts into the lateral gate by ß-signal exchange. Transport through the Omp85-channel interior followed by release through the lateral gate into the lipid phase may represent a basic mechanism for membrane insertion of ß-barrel proteins.


Subject(s)
Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Porins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Porins/genetics , Protein Conformation, beta-Strand , Protein Folding , Protein Transport , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Voltage-Dependent Anion Channel 1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...