Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 5793, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723162

ABSTRACT

The coherent transduction of information between microwave and optical domains is a fundamental building block for future quantum networks. A promising way to bridge these widely different frequencies is using high-frequency nanomechanical resonators interacting with low-loss optical modes. State-of-the-art optomechanical devices rely on purely dispersive interactions that are enhanced by a large photon population in the cavity. Additionally, one could use dissipative optomechanics, where photons can be scattered directly from a waveguide into a resonator hence increasing the degree of control of the acousto-optic interplay. Hitherto, such dissipative optomechanical interaction was only demonstrated at low mechanical frequencies, precluding prominent applications such as the quantum state transfer between photonic and phononic domains. Here, we show the first dissipative optomechanical system operating in the sideband-resolved regime, where the mechanical frequency is larger than the optical linewidth. Exploring this unprecedented regime, we demonstrate the impact of dissipative optomechanical coupling in reshaping both mechanical and optical spectra. Our figures represent a two-order-of-magnitude leap in the mechanical frequency and a tenfold increase in the dissipative optomechanical coupling rate compared to previous works. Further advances could enable the individual addressing of mechanical modes and help mitigate optical nonlinearities and absorption in optomechanical devices.

2.
J Opt Soc Am A Opt Image Sci Vis ; 40(4): OSA1-OSA2, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37132989

ABSTRACT

South American optics research has seen remarkable growth over the past 50 years, with significant contributions in areas such as quantum optics, holography, spectroscopy, nonlinear optics, statistical optics, nanophotonics and integrated photonics. The research has driven economic development in sectors like telecom, biophotonics, biometrics, and agri-sensing. This joint feature issue between JOSA A and JOSA B exhibits cutting-edge optics research from the region, fostering a sense of community and promoting collaboration among researchers.

3.
Nat Commun ; 12(1): 5625, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34561457

ABSTRACT

Experimental exploration of synchronization in scalable oscillator microsystems has unfolded a deeper understanding of networks, collective phenomena, and signal processing. Cavity optomechanical devices have played an important role in this scenario, with the perspective of bridging optical and radio frequencies through nonlinear classical and quantum synchronization concepts. In its simplest form, synchronization occurs when an oscillator is entrained by a signal with frequency nearby the oscillator's tone, and becomes increasingly challenging as their frequency detuning increases. Here, we experimentally demonstrate entrainment of a silicon-nitride optomechanical oscillator driven up to the fourth harmonic of its 32 MHz fundamental frequency. Exploring this effect, we also experimentally demonstrate a purely optomechanical RF frequency divider, where we performed frequency division up to a 4:1 ratio, i.e., from 128 MHz to 32 MHz. Further developments could harness these effects towards frequency synthesizers, phase-sensitive amplification and nonlinear sensing.

4.
Opt Express ; 29(2): 1736-1748, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726381

ABSTRACT

We propose a feasible waveguide design optimized for harnessing Stimulated Brillouin Scattering with long-lived phonons. The design consists of a fully suspended ridge waveguide surrounded by a 1D phononic crystal that mitigates losses to the substrate while providing the needed homogeneity for the build-up of the optomechanical interaction. The coupling factor of these structures was calculated to be GB/Qm = 0.54 (W m)-1 for intramodal backward Brillouin scattering with its fundamental TE-like mode and GB/Qm = 4.5 (W m)-1 for intramodal forward Brillouin scattering. The addition of the phononic crystal provides a 30 dB attenuation of the mechanical displacement after only five unitary cells, possibly leading to a regime where the acoustic losses are only limited by fabrication. As a result, the total Brillouin gain, which is proportional to the product of the coupling and acoustic quality factors, is nominally equal to the idealized fully suspended waveguide.

5.
Phys Rev Lett ; 125(23): 233601, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33337227

ABSTRACT

Despite the several novel features arising from the dissipative optomechanical coupling, such effect remains vastly unexplored due to the lack of a simple formalism that captures non-Hermiticity in the engineering of optomechanical systems. In this Letter, we show that quasinormal-mode-based perturbation theory is capable of correctly predicting both dispersive and dissipative optomechanical couplings. We validate our model through simulations and also by comparison with experimental results reported in the literature. Finally, we apply this formalism to plasmonic systems, used for molecular optomechanics, where strong dissipative coupling signatures in the amplification of vibrational modes could be observed.

6.
Nature ; 566(7742): 89-93, 2019 02.
Article in English | MEDLINE | ID: mdl-30664747

ABSTRACT

The field of miniature mechanical oscillators is rapidly evolving, with emerging applications including signal processing, biological detection1 and fundamental tests of quantum mechanics2. As the dimensions of a mechanical oscillator shrink to the molecular scale, such as in a carbon nanotube resonator3-7, their vibrations become increasingly coupled and strongly interacting8,9 until even weak thermal fluctuations could make the oscillator nonlinear10-13. The mechanics at this scale possesses rich dynamics, unexplored because an efficient way of detecting the motion in real time is lacking. Here we directly measure the thermal vibrations of a carbon nanotube in real time using a high-finesse micrometre-scale silicon nitride optical cavity as a sensitive photonic microscope. With the high displacement sensitivity of 700 fm Hz-1/2 and the fine time resolution of this technique, we were able to discover a realm of dynamics undetected by previous time-averaged measurements and a room-temperature coherence that is nearly three orders of magnitude longer than previously reported. We find that the discrepancy in the coherence stems from long-time non-equilibrium dynamics, analogous to the Fermi-Pasta-Ulam-Tsingou recurrence seen in nonlinear systems14. Our data unveil the emergence of a weakly chaotic mechanical breather15, in which vibrational energy is recurrently shared among several resonance modes-dynamics that we are able to reproduce using a simple numerical model. These experiments open up the study of nonlinear mechanical systems in the Brownian limit (that is, when a system is driven solely by thermal fluctuations) and present an integrated, sensitive, high-bandwidth nanophotonic interface for carbon nanotube resonators.

7.
Opt Express ; 25(25): 31347-31361, 2017 Dec 11.
Article in English | MEDLINE | ID: mdl-29245810

ABSTRACT

Elastic dissipation through radiation towards the substrate is a major loss channel in micro- and nanomechanical resonators. Engineering the coupling of these resonators with optical cavities further complicates and constrains the design of low-loss optomechanical devices. In this work we rely on the coherent cancellation of mechanical radiation to demonstrate material and surface absorption limited silicon near-field optomechanical resonators oscillating at tens of MHz. The effectiveness of our dissipation suppression scheme is investigated at room and cryogenic temperatures. While at room temperature we can reach a maximum quality factor of 7.61k (fQ-product of the order of 1011 Hz), at 22 K the quality factor increases to 37k, resulting in a fQ-product of 2 × 1012 Hz.

8.
Sci Rep ; 7(1): 2491, 2017 05 30.
Article in English | MEDLINE | ID: mdl-28559585

ABSTRACT

Photonic crystals use periodic structures to create frequency regions where the optical wave propagation is forbidden, which allows the creation and integration of complex optical functionalities in small footprint devices. Such strategy has also been successfully applied to confine mechanical waves and to explore their interaction with light in the so-called optomechanical cavities. Because of their challenging design, these cavities are traditionally fabricated using dedicated high-resolution electron-beam lithography tools that are inherently slow, limiting this solution to small-scale or research applications. Here we show how to overcome this problem by using a deep-UV photolithography process to fabricate optomechanical crystals in a commercial CMOS foundry. We show that a careful design of the photonic crystals can withstand the limitations of the photolithography process, producing cavities with measured intrinsic optical quality factors as high as Q i = (1.21 ± 0.02) × 106. Optomechanical crystals are also created using phononic crystals to tightly confine the GHz sound waves within the optical cavity, resulting in a measured vacuum optomechanical coupling rate of g 0 = 2π × (91 ± 4) kHz. Efficient sideband cooling and amplification are also demonstrated since these cavities are in the resolved sideband regime. Further improvements in the design and fabrication process suggest that commercial foundry-based optomechanical cavities could be used for quantum ground-state cooling.

9.
Opt Express ; 25(2): 508-529, 2017 Jan 23.
Article in English | MEDLINE | ID: mdl-28157943

ABSTRACT

Optomechanical cavities have proven to be an exceptional tool to explore fundamental and applied aspects of the interaction between mechanical and optical waves. Here we demonstrate a novel optomechanical cavity based on a disk with a radial mechanical bandgap. This design confines light and mechanical waves through distinct physical mechanisms which allows for independent control of the mechanical and optical properties. Simulations foresee an optomechanical coupling rate g0 reaching 2π × 100 kHz for mechanical frequencies around 5 GHz as well as anchor loss suppression of 60 dB. Our device design is not limited by unique material properties and could be easily adapted to allow for large optomechanical coupling and high mechanical quality factors with other promising materials. Finally, our devices were fabricated in a commercial silicon photonics facility, demonstrating g0/2π = 23 kHz for mechanical modes with frequencies around 2 GHz and mechanical Q-factors as high as 2300 at room temperature, also showing that our approach can be easily scalable and useful as a new platform for multimode optomechanics.

10.
Opt Express ; 24(17): 18960-72, 2016 Aug 22.
Article in English | MEDLINE | ID: mdl-27557177

ABSTRACT

Coupled resonators are commonly used to achieve tailored spectral responses and allow novel functionalities in a broad range of applications. The Temporal Coupled-Mode Theory (TCMT) provides a simple and general tool that is widely used to model these devices. Relying on TCMT to model coupled resonators might however be misleading in some circumstances due to the lumped-element nature of the model. In this article, we report an important limitation of TCMT related to the prediction of dark states. Studying a coupled system composed of three microring resonators, we demonstrate that TCMT predicts the existence of a dark state that is in disagreement with experimental observations and with the more general results obtained with the Transfer Matrix Method (TMM) and the Finite-Difference Time-Domain (FDTD) simulations. We identify the limitation in the TCMT model to be related to the mechanism of excitation/decay of the supermodes and we propose a correction that effectively reconciles the model with expected results. Our discussion based on coupled microring resonators can be useful for other electromagnetic resonant systems due to the generality and far-reach of the TCMT formalism.

11.
Opt Lett ; 40(14): 3332-5, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-26176462

ABSTRACT

Optical mode-splitting is an efficient tool to shape and fine-tune the spectral response of resonant nanophotonic devices. The active control of mode-splitting, however, is either small or accompanied by undesired resonance-shifts, often much larger than the resonance splitting. We report a control mechanism that enables reconfigurable and widely tunable mode splitting while efficiently mitigating undesired resonance shifts. This is achieved by actively controlling the excitation of counter-traveling modes in coupled resonators. The transition from a large splitting (80 GHz) to a single-notch resonance is demonstrated using low-power microheaters (35 mW). We show that the spurious resonance shift in our device is only limited by thermal crosstalk, and resonance-shift-free splitting control may be achieved.

12.
Opt Express ; 22(9): 10430-8, 2014 May 05.
Article in English | MEDLINE | ID: mdl-24921744

ABSTRACT

Single microring resonators have been used in applications such as wavelength multicasting and microwave photonics, but the dependence of the free spectral range with ring radius imposes a trade-off between the required GHz optical channel spacing, footprint and power consumption. We demonstrate four-channel all-optical wavelength multicasting using only 1 mW of control power, with converted channel spacing of 40-60 GHz. Our device is based on a compact embedded microring design fabricated on a scalable SOI platform. The coexistence of close resonance spacing and high finesse (205) in a compact footprint is possible due to enhanced quality factors (30,000) resulting from the embedded configuration and the coupling-strength dependence of resonance spacing, instead of ring size. In addition, we discuss the possibility of achieving continuously mode splitting from a single-notch resonance up to 40 GHz.

13.
Opt Express ; 21(1): 1234-9, 2013 Jan 14.
Article in English | MEDLINE | ID: mdl-23389016

ABSTRACT

Optical nanoantennas, especially of the dipole type, have been theoretically and experimentally demonstrated by many research groups. Likewise, the plasmonic waveguides and optical circuits have experienced significant advances. In radio frequencies and microwaves a category of antenna known as dielectric resonator antenna (DRA), whose radiant element is a dielectric resonator (DR), has been designed for several applications, including satellite and radar systems. In this letter, we explore the possibilities and advantages to design nano DRAs (NDRAs), i. e., DRAs for nanophotonics applications. Numerical demonstrations showing the fundamental antenna parameters for a circular cylindrical NDRA type have been carried out for the short (S), conventional (C), and long (L) bands of the optical communication spectrum.

14.
Opt Lett ; 37(4): 590-2, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22344116

ABSTRACT

We demonstrate power insensitive silicon microring resonators without the need for active feedback control. The passive control of the resonance is achieved by utilizing the compensation of two counteracting processes, free carrier dispersion blueshift and thermo-optic redshift. In the fabricated devices, the resonant wavelength shifts less than one resonance linewidth for dropped power up to 335 µW, more than fivefold improvement in cavity energy handling capability compared to regular microrings.

15.
Phys Rev Lett ; 109(23): 233906, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23368207

ABSTRACT

Synchronization, the emergence of spontaneous order in coupled systems, is of fundamental importance in both physical and biological systems. We demonstrate the synchronization of two dissimilar silicon nitride micromechanical oscillators, that are spaced apart by a few hundred nanometers and are coupled through an optical cavity radiation field. The tunability of the optical coupling between the oscillators enables one to externally control the dynamics and switch between coupled and individual oscillation states. These results pave a path toward reconfigurable synchronized oscillator networks.


Subject(s)
Models, Theoretical , Oscillometry/methods , Light , Optical Devices , Oscillometry/instrumentation
16.
Opt Express ; 19(7): 6284-9, 2011 Mar 28.
Article in English | MEDLINE | ID: mdl-21451653

ABSTRACT

We demonstrate high quality factor etchless silicon photonic ring resonators fabricated by selective thermal oxidation of silicon without the silicon layer being exposed to any plasma etching throughout the fabrication process. We achieve a high intrinsic quality factor of 510,000 in 50 µm-radius ring resonators, corresponding to a ring loss of 0.8 dB/cm. The device has a total chip insertion loss of 2.5 dB, achieved by designing etchless silicon inverse nanotapers at both the input and output of the chip.


Subject(s)
Nanotechnology/instrumentation , Optical Devices , Silicon/chemistry , Surface Plasmon Resonance/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis
17.
Opt Express ; 19(3): 2782-90, 2011 Jan 31.
Article in English | MEDLINE | ID: mdl-21369099

ABSTRACT

We demonstrate broadband tuning of an optomechanical microcavity optical resonance by exploring the large optomechanical coupling of a double-wheel microcavity and its uniquely low mechanical stiffness. Using a pump laser with only 13 mW at telecom wavelengths we show tuning of the silicon nitride microcavity resonances over 32 nm. This corresponds to a tuning power efficiency of only 400 mW/nm. By choosing a relatively low optical Q resonance (≈ 18,000) we prevent the cavity from reaching the regime of regenerative optomechanical oscillations. The static mechanical displacement induced by optical gradient forces is estimated to be as large as 60 nm.


Subject(s)
Lasers, Solid-State , Micro-Electrical-Mechanical Systems/instrumentation , Refractometry/instrumentation , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis
18.
Nature ; 462(7273): 633-6, 2009 Dec 03.
Article in English | MEDLINE | ID: mdl-19915549

ABSTRACT

The use of optical forces to manipulate small objects is well known. Applications include the manipulation of living cells by optical tweezers and optical cooling in atomic physics. The miniaturization of optical systems (to the micro and nanoscale) has resulted in very compliant systems with masses of the order of nanograms, rendering them susceptible to optical forces. Optical forces have been exploited to demonstrate chaotic quivering of microcavities, optical cooling of mechanical modes, actuation of a tapered-fibre waveguide and excitation of the mechanical modes of silicon nano-beams. Despite recent progress in this field, it is challenging to manipulate the optical response of photonic structures using optical forces; this is because of the large forces that are required to induce appreciable changes in the geometry of the structure. Here we implement a resonant structure whose optical response can be efficiently statically controlled using relatively weak attractive and repulsive optical forces. We demonstrate a static mechanical deformation of up to 20 nanometres in a silicon nitride structure, using three milliwatts of continuous optical power. Because of the sensitivity of the optical response to this deformation, such optically induced static displacement introduces resonance shifts spanning 80 times the intrinsic resonance linewidth.

SELECTION OF CITATIONS
SEARCH DETAIL
...