Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Plants (Basel) ; 12(10)2023 May 17.
Article in English | MEDLINE | ID: mdl-37653926

ABSTRACT

The New Zealand Institute for Plant and Food Research Limited (PFR) supports a large kiwifruit breeding program that includes more than twenty Actinidia species. Almost all the kiwifruit accessions are held as field collections across a range of locations, though not all plants are at multiple locations. An in vitro collection of kiwifruit in New Zealand was established upon the arrival of Pseudomonas syringae pv. Actinadiae-biovar 3 in 2010. The value of an in vitro collection has been emphasized by restrictions on importation of new plants into New Zealand and increasing awareness of the array of biotic and abiotic threats to field collections. The PFR in vitro collection currently holds about 450 genotypes from various species, mostly A. chinensis var. chinensis and A. chinensis var. deliciosa. These collections and the in vitro facilities are used for germplasm conservation, identification of disease-free plants, reference collections and making plants available to users. Management of such a diverse collection requires appropriate protocols, excellent documentation, training, sample tracking and databasing and true-to-type testing, as well as specialized facilities and resources. This review also discusses the New Zealand biosecurity and compliance regime governing kiwifruit plant movement, and how protocols employed by the facility aid the movement of pathogen-free plants within and from New Zealand.

2.
Hortic Res ; 10(1): uhac239, 2023.
Article in English | MEDLINE | ID: mdl-36643755

ABSTRACT

Apple (Malus) and pear (Pyrus) are economically important fruit crops well known for their unique textures, flavours, and nutritional qualities. Both genera are characterised by a distinct pattern of secondary metabolites, which directly affect not only resistance to certain diseases, but also have significant impacts on the flavour and nutritional value of the fruit. The identical chromosome numbers, similar genome size, and their recent divergence date, together with DNA markers have shown that apple and pear genomes are highly co-linear. This study utilized comparative genomic approaches, including simple sequence repeats, high resolution single nucleotide polymorphism melting analysis, and single nucleotide polymorphism chip analysis to identify genetic differences among hybrids of Malus and Pyrus, and F2 offspring. This research has demonstrated and validated that these three marker types, along with metabolomics analysis are very powerful tools to detect and confirm hybridity of progeny derived from crosses between apple and pear in both cross directions. Furthermore, this work analysed the genus-specific metabolite patterns and the resistance to fire blight (Erwinia amylovora) in progeny. The findings of this work will enhance and accelerate the breeding of novel tree fruit crops that benefit producers and consumers, by enabling marker assisted selection of desired traits introgressed between pear and apple.

3.
Hortic Res ; 9: uhac218, 2022.
Article in English | MEDLINE | ID: mdl-36479587

ABSTRACT

Understanding the genetic architecture of apple phytochemicals, and their interplay with conventional selection traits, is critical for the development of new apple cultivars with enhanced health benefits. Apple accessions (n = 344) used for this genome-wide association study (GWAS) represented the wide diversity of metabolic profiles in the domesticated and wild Malus genepools. Fruit samples were phenotyped for 34 metabolites, including a stable vitamin C glycoside "ascorbic acid 2-ß-glucoside" (AA-2ßG), and the accessions were genotyped using the Apple 20 K SNP Array. Several fruit quality traits, including red skin over-colour (OCOL), were also assessed. Wild Malus accessions showed at least 2-fold higher average content of several metabolites (e.g. ascorbic acid, chlorogenic acid, phloridzin, and trilobatin) than Malus domestica accessions. Several new genomic regions and potential candidate genes underpinning the genetic diversity of apple phytochemicals were identified. The percentage of phenotypic variance explained by the best SNP ranged between 3% and 21% for the different metabolites. Novel association signals for OCOL in the syntenic regions on chromosomes 13 and 16 suggested that whole genome duplication has played a role in the evolution of apple red skin colour. Genetic correlations between phytochemicals and sensory traits were moderate. This study will assist in the selection of Malus accessions with specific phytochemical profiles to establish innovative genomics-based breeding strategies for the development of apple cultivars with enhanced nutritional value.

4.
Front Plant Sci ; 13: 878733, 2022.
Article in English | MEDLINE | ID: mdl-35665190

ABSTRACT

Certain viruses dramatically affect yield and quality of potatoes and have proved difficult to eradicate with current approaches. Here, we describe a reliable and efficient virus eradication method that is high throughput and more efficacious at producing virus-free potato plants than current reported methods. Thermotherapy, chemotherapy, and cryotherapy treatments were tested alone and in combination for ability to eradicate single and mixed Potato virus S (PVS), Potato virus A (PVA), and Potato virus M (PVM) infections from three potato cultivars. Chemotherapy treatments were undertaken on in vitro shoot segments for four weeks in culture medium supplemented with 100 mg L-1 ribavirin. Thermotherapy on in vitro shoot segments was applied for two weeks at 40°C (day) and 28°C (night) with a 16 h photoperiod. Plant vitrification solution 2 (PVS2) and cryotherapy treatments included a shoot tip preculture followed by exposure to PVS2 either without or with liquid nitrogen (LN, cryotherapy) treatment. The virus status of control and recovered plants following therapies was assessed in post-regeneration culture after 3 months and then retested in plants after they had been growing in a greenhouse for a further 3 months. Microtuber production was investigated using in vitro virus-free and virus-infected segments. We found that thermotherapy and cryotherapy (60 min PVS2 + LN) used alone were not effective in virus eradication, while chemotherapy was better but with variable efficacy (20-100%). The most effective result (70-100% virus eradication) was obtained by combining chemotherapy with cryotherapy, or by consecutive chemotherapy, combined chemotherapy and thermotherapy, then cryotherapy treatments irrespective of cultivar. Regrowth following the two best virus eradication treatments was similar ranging from 8.6 to 29% across the three cultivars. The importance of virus removal on yield was reflected in "Dunluce" free of PVS having higher numbers of microtubers and in "V500' free of PVS and PVA having a greater proportion of microtubers > 5 mm. Our improved procedure has potential for producing virus-free planting material for the potato industry. It could also underpin the global exchange of virus-free germplasm for conservation and breeding programs.

5.
PLoS One ; 17(4): e0257746, 2022.
Article in English | MEDLINE | ID: mdl-35421090

ABSTRACT

Verification of clonal identity of hop (Humulus lupulus L.) cultivars within breeding programs and germplasm collections is vital to conserving genetic resources. Accurate and economic DNA-based tools are needed in dioecious hop to confirm identity and parentage, neither of which can be reliably determined from morphological observations. In this study, we developed two fingerprinting sets for hop: a 9-SSR fingerprinting set containing high-core repeats that can be run in a single PCR reaction and a kompetitive allele specific PCR (KASP) assay of 25 single nucleotide polymorphisms (SNPs). The SSR set contains a sex-linked primer pair, HI-AGA7, that was used to genotype 629 hop accessions from the US Department of Agriculture (USDA) National Clonal Germplasm Repository (NCGR), the USDA Forage Seed and Cereal Research (FSCR), and the University of Nebraska-Lincoln (UNL) collections. The SSR set identified unique genotypes except for 89 sets of synonymous samples. These synonyms included: cultivars with different designations, the same cultivars from different sources, heat-treated clones, and clonal variants. Population structure analysis clustered accessions into wild North American (WNA) and cultivated groups. Diversity was slightly higher in the cultivated samples due to larger sample size. Parentage and sib-ship analyses were used to identify true-to-type cultivars. The HI-AGA7 marker generated two male- and nine female-specific alleles among the cultivated and WNA samples. The SSR and KASP fingerprinting sets were compared in 190 samples consisting of cultivated and WNA accession for their ability to confirm identity and assess diversity and population structure. The SSR fingerprinting set distinguished cultivars, selections and WNA accessions while the KASP assays were unable to distinguish the WNA samples and had lower diversity estimates than the SSR set. Both fingerprinting sets are valuable tools for identity confirmation and parentage analysis in hop for different purposes. The 9-SSR assay is cost efficient when genotyping a small number of wild and cultivated hop samples (<96) while the KASP assay is easy to interpret and cost efficient for genotyping a large number of cultivated samples (multiples of 96).


Subject(s)
Humulus , Alleles , Genetic Variation , Genotype , Humulus/genetics , Microsatellite Repeats/genetics , Phylogeny , Plant Breeding , Polymerase Chain Reaction
6.
Front Plant Sci ; 11: 590846, 2020.
Article in English | MEDLINE | ID: mdl-33469460

ABSTRACT

Runs of homozygosity (ROH) have been widely used to study population history and trait architecture in humans and livestock species, but their application in self-incompatible plants has not been reported. The distributions of ROH in 199 accessions representing Asian pears (45), European pears (109), and interspecific hybrids (45) were investigated using genotyping-by-sequencing in this study. Fruit phenotypes including fruit weight, firmness, Brix, titratable acidity, and flavor volatiles were measured for genotype-phenotype analyses. The average number of ROH and the average total genomic length of ROH were 6 and 11 Mb, respectively, in Asian accessions, and 13 and 30 Mb, respectively, in European accessions. Significant associations between genomic inbreeding coefficients (FROH) and phenotypes were observed for 23 out of 32 traits analyzed. An overlap between ROH islands and significant markers from genome-wide association analyses was observed. Previously published quantitative trait loci for fruit traits and disease resistances also overlapped with some of the ROH islands. A prominent ROH island at the bottom of linkage group 17 overlapped with a recombination-supressed genomic region harboring the self-incompatibility locus. The observed ROH patterns suggested that systematic breeding of European pears would have started earlier than of Asian pears. Our research suggest that FROH would serve as a novel tool for managing inbreeding in gene-banks of self-incompatible plant species. ROH mapping provides a complementary strategy to unravel the genetic architecture of complex traits, and to evaluate differential selection in outbred plants. This seminal work would provide foundation for the ROH research in self-incompatible plants.

7.
Hortic Res ; 6: 101, 2019.
Article in English | MEDLINE | ID: mdl-31645956

ABSTRACT

Pseudomonas syringae pv. actinidiae (Psa) biovar 3, a virulent, canker-inducing pathogen is an economic threat to the kiwifruit (Actinidia spp.) industry worldwide. The commercially grown diploid (2×) A. chinensis var. chinensis is more susceptible to Psa than tetraploid and hexaploid kiwifruit. However information on the genetic loci modulating Psa resistance in kiwifruit is not available. Here we report mapping of quantitative trait loci (QTLs) regulating resistance to Psa in a diploid kiwifruit population, derived from a cross between an elite Psa-susceptible 'Hort16A' and a resistant male breeding parent P1. Using high-density genetic maps and intensive phenotyping, we identified a single QTL for Psa resistance on Linkage Group (LG) 27 of 'Hort16A' revealing 16-19% phenotypic variance and candidate alleles for susceptibility and resistance at this loci. In addition, six minor QTLs were identified in P1 on distinct LGs, exerting 4-9% variance. Resistance in the F1 population is improved by additive effects from 'Hort16A' and P1 QTLs providing evidence that divergent genetic pathways interact to combat the virulent Psa strain. Two different bioassays further identified new QTLs for tissue-specific responses to Psa. The genetic marker at LG27 QTL was further verified for association with Psa resistance in diploid Actinidia chinensis populations. Transcriptome analysis of Psa-resistant and susceptible genotypes in field revealed hallmarks of basal defense and provided candidate RNA-biomarkers for screening for Psa resistance in greenhouse conditions.

8.
Sci Rep ; 9(1): 9072, 2019 06 21.
Article in English | MEDLINE | ID: mdl-31227781

ABSTRACT

Interspecific pear (Pyrus spp.) hybrid populations are often used to develop novel cultivars. Pear cultivar breeding is a lengthy process because of long juvenility and the subsequent time required for reliable fruit phenotyping. Molecular techniques such as genome-wide association (GWA) and genomic selection (GS) provide an opportunity to fast-forward the development of high-value cultivars. We evaluated the genetic architecture of 10 pear fruit phenotypes (including sensory traits) and the potential of GS using genotyping-by-sequencing of 550 hybrid seedlings from nine interrelated full-sib families. Results from GWA suggested a complex polygenic nature of all 10 traits as the maximum variance explained by each marker was less than 4% of the phenotypic variance. The effect-size of SNPs for each trait suggested many genes of small effect and few of moderate effect. Some genomic regions associated with pear sensory traits were similar to those reported for apple - possibly a result of high synteny between the apple and pear genomes. The average (across nine families) GS accuracy varied from 0.32 (for crispness) to 0.62 (for sweetness), with an across-trait average of 0.42. Further efforts are needed to develop larger genotype-phenotype datasets in order to predict fruit phenotypes of untested seedlings with sufficient efficiency.


Subject(s)
Genetic Markers , Genome, Plant , Pyrus/genetics , Genome-Wide Association Study , Polymorphism, Single Nucleotide
9.
Hortic Res ; 6: 29, 2019.
Article in English | MEDLINE | ID: mdl-30651990

ABSTRACT

Red skin colour is an important target trait in various pear breeding programmes. In this study, the genetic control of red skin colour was investigated in an interspecific population derived using the descendants of the red sport European pear cultivar 'Max Red Bartlett' (MRB) and the red-blushed Chinese pear cultivar 'Huobali'. Approximately 550 seedlings from nine families were phenotyped for red skin over-colour coverage (Ocolcov) and the intensity of red over-colour (Ocolint) on a 0-9 scale, and genotyped using genotyping-by-sequencing. Genome-wide association analyses were conducted using 7500 high-quality single nucleotide polymorphisms (SNPs). Genomic regions on linkage groups (LG) 4 and 5 were found to be associated, and the best SNP (S578_25116) on LG4 accounted for ~15% of phenotypic variation in Ocolcov and Ocolint. The association of S578_25116 with Ocolcov and Ocolint was successfully validated in a sample of ~200 European and Asian pear accessions. The association with red skin at locus S578_25116 was not present in Asian pear accessions, suggesting its close proximity to the MRB's Cardinal gene. Several putative candidate genes, including MYB transcription factors (PCP027962 and PCP027967), were identified in the quantitative trait locus region on LG4 and await functional validation.

10.
Hortic Res ; 4: 17015, 2017.
Article in English | MEDLINE | ID: mdl-28451438

ABSTRACT

Understanding of genetic diversity and marker-trait relationships in pears (Pyrus spp.) forms an important part of gene conservation and cultivar breeding. Accessions of Asian and European pear species, and interspecific hybrids were planted in a common garden experiment. Genotyping-by-sequencing (GBS) was used to genotype 214 accessions, which were also phenotyped for fruit quality traits. A combination of selection scans and association analyses were used to identify signatures of selection. Patterns of genetic diversity, population structure and introgression were also investigated. About 15 000 high-quality SNP markers were identified from the GBS data, of which 25% and 11% harboured private alleles for European and Asian species, respectively. Bayesian clustering analysis suggested negligible gene flow, resulting in highly significant population differentiation (Fst=0.45) between Asian and European pears. Interspecific hybrids displayed an average of 55% and 45% introgression from their Asian and European ancestors, respectively. Phenotypic (firmness, acidity, shape and so on) variation between accessions was significantly associated with genetic differentiation. Allele frequencies at large-effect SNP loci were significantly different between genetic groups, suggesting footprints of directional selection. Selection scan analyses identified over 20 outlier SNP loci with substantial statistical support, likely to be subject to directional selection or closely linked to loci under selection.

11.
BMC Plant Biol ; 15: 230, 2015 Sep 22.
Article in English | MEDLINE | ID: mdl-26394845

ABSTRACT

BACKGROUND: The vigour and precocity of trees highly influences their efficiency in commercial production. In apple, dwarfing rootstocks allow high-density plantings while their precocious flowering enables earlier fruit production. Currently, there is a lack of pear (Pyrus communis L.) rootstocks that are equivalent to the high yielding apple rootstock 'M9'. For the efficient breeding of new Pyrus rootstocks it is crucial to understand the genetic determinants of vigour control and precocity. In this study we used quantitative trait loci (QTLs) analysis to identify genetic loci associated with the desired traits, using a segregating population of 405 F1 P. communis seedlings from a cross between 'Old Home' and 'Louise Bonne de Jersey' (OHxLBJ). The seedlings were grafted as rootstocks with 'Doyenne du Comice' scions and comprehensively phenotyped over four growing seasons for traits related to tree architecture and flowering, in order to describe the growth of the scions. RESULTS: A high density single nucleotide polymorphism (SNP)-based genetic map comprising 597 polymorphic pear and 113 apple markers enabled the detection of QTLs influencing expression of scion vigour and precocity located on linkage groups (LG)5 and LG6 of 'Old Home'. The LG5 QTL maps to a position that is syntenic to the apple 'Malling 9' ('M9') Dw1 locus at the upper end of LG5. An allele of a simple sequence repeat (SSR) associated with apple Dw1 segregated with dwarfing and precocity in pear and was identified in other pear germplasm accessions. The orthology of the vigour-controlling LG5 QTL between apple and pear raises the possibility that the dwarfing locus Dw1 arose before the divergence of apple and pear, and might therefore be present in other Rosaceae species. CONCLUSION: We report the first QTLs associated with vigour control and flowering traits in pear rootstocks. Orthologous loci were found to control scion growth and precocity in apple and pear rootstocks. The application of our results may assist in the breeding process of a pear rootstock that confers both vigour control and precocity to the grafted scion cultivar.


Subject(s)
Polymorphism, Single Nucleotide , Pyrus/growth & development , Pyrus/genetics , Quantitative Trait Loci , Synteny , Chromosome Mapping , Genetic Markers , Malus/genetics , Malus/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Pyrus/metabolism
12.
PLoS One ; 9(4): e92644, 2014.
Article in English | MEDLINE | ID: mdl-24699266

ABSTRACT

We present a draft assembly of the genome of European pear (Pyrus communis) 'Bartlett'. Our assembly was developed employing second generation sequencing technology (Roche 454), from single-end, 2 kb, and 7 kb insert paired-end reads using Newbler (version 2.7). It contains 142,083 scaffolds greater than 499 bases (maximum scaffold length of 1.2 Mb) and covers a total of 577.3 Mb, representing most of the expected 600 Mb Pyrus genome. A total of 829,823 putative single nucleotide polymorphisms (SNPs) were detected using re-sequencing of 'Louise Bonne de Jersey' and 'Old Home'. A total of 2,279 genetically mapped SNP markers anchor 171 Mb of the assembled genome. Ab initio gene prediction combined with prediction based on homology searching detected 43,419 putative gene models. Of these, 1219 proteins (556 clusters) are unique to European pear compared to 12 other sequenced plant genomes. Analysis of the expansin gene family provided an example of the quality of the gene prediction and an insight into the relationships among one class of cell wall related genes that control fruit softening in both European pear and apple (Malus × domestica). The 'Bartlett' genome assembly v1.0 (http://www.rosaceae.org/species/pyrus/pyrus_communis/genome_v1.0) is an invaluable tool for identifying the genetic control of key horticultural traits in pear and will enable the wide application of marker-assisted and genomic selection that will enhance the speed and efficiency of pear cultivar development.


Subject(s)
Chromosomes, Plant/genetics , Genes, Plant , Genome, Plant , Pyrus/genetics , Chromosome Mapping , DNA, Plant/genetics , Europe , Evolution, Molecular , Genetic Markers , Genomics , High-Throughput Nucleotide Sequencing , Malus/genetics , Phylogeny , Polymorphism, Single Nucleotide/genetics , Proteome/analysis , RNA, Plant/genetics , Repetitive Sequences, Nucleic Acid
13.
Plant J ; 78(6): 903-15, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24661745

ABSTRACT

The 'fruity' attributes of ripe apples (Malus × domestica) arise from our perception of a combination of volatile ester compounds. Phenotypic variability in ester production was investigated using a segregating population from a 'Royal Gala' (RG; high ester production) × 'Granny Smith' (GS; low ester production) cross, as well as in transgenic RG plants in which expression of the alcohol acyl transferase 1 (AAT1) gene was reduced. In the RG × GS population, 46 quantitative trait loci (QTLs) for the production of esters and alcohols were identified on 15 linkage groups (LGs). The major QTL for 35 individual compounds was positioned on LG2 and co-located with AAT1. Multiple AAT1 gene variants were identified in RG and GS, but only two (AAT1-RGa and AAT1-GSa) were functional. AAT1-RGa and AAT1-GSa were both highly expressed in the cortex and skin of ripe fruit, but AAT1 protein was observed mainly in the skin. Transgenic RG specifically reduced in AAT1 expression showed reduced levels of most key esters in ripe fruit. Differences in the ripe fruit aroma could be perceived by sensory analysis. The transgenic lines also showed altered ratios of biosynthetic precursor alcohols and aldehydes, and expression of a number of ester biosynthetic genes increased, presumably in response to the increased substrate pool. These results indicate that the AAT1 locus is critical for the biosynthesis of esters contributing to a 'ripe apple' flavour.


Subject(s)
Acetyltransferases/genetics , Esters/metabolism , Malus/genetics , Plant Proteins/genetics , Quantitative Trait Loci , Acetyltransferases/metabolism , Acetyltransferases/physiology , Chromosome Mapping , Down-Regulation , Genetic Association Studies , Genetic Linkage , Genetic Variation , Malus/metabolism , Molecular Sequence Data , Plant Proteins/metabolism , Plant Proteins/physiology , Plants, Genetically Modified/metabolism
14.
PLoS One ; 8(10): e77022, 2013.
Article in English | MEDLINE | ID: mdl-24155917

ABSTRACT

We have used new generation sequencing (NGS) technologies to identify single nucleotide polymorphism (SNP) markers from three European pear (Pyrus communis L.) cultivars and subsequently developed a subset of 1096 pear SNPs into high throughput markers by combining them with the set of 7692 apple SNPs on the IRSC apple Infinium® II 8K array. We then evaluated this apple and pear Infinium® II 9K SNP array for large-scale genotyping in pear across several species, using both pear and apple SNPs. The segregating populations employed for array validation included a segregating population of European pear ('Old Home'×'Louise Bon Jersey') and four interspecific breeding families derived from Asian (P. pyrifolia Nakai and P. bretschneideri Rehd.) and European pear pedigrees. In total, we mapped 857 polymorphic pear markers to construct the first SNP-based genetic maps for pear, comprising 78% of the total pear SNPs included in the array. In addition, 1031 SNP markers derived from apple (13% of the total apple SNPs included in the array) were polymorphic and were mapped in one or more of the pear populations. These results are the first to demonstrate SNP transferability across the genera Malus and Pyrus. Our construction of high density SNP-based and gene-based genetic maps in pear represents an important step towards the identification of chromosomal regions associated with a range of horticultural characters, such as pest and disease resistance, orchard yield and fruit quality.


Subject(s)
Chromosome Mapping , Hybridization, Genetic , Polymorphism, Single Nucleotide/genetics , Pyrus/genetics , Alleles , Base Sequence , Chromosome Segregation/genetics , Chromosomes, Plant/genetics , Crosses, Genetic , Europe , Genetic Markers , Genome, Plant/genetics , Genotyping Techniques , Malus/genetics , Microsatellite Repeats/genetics , Pedigree , Selection, Genetic , Species Specificity
15.
BMC Genet ; 13: 25, 2012 Apr 03.
Article in English | MEDLINE | ID: mdl-22471693

ABSTRACT

BACKGROUND: Breeding of fire blight resistant scions and rootstocks is a goal of several international apple breeding programs, as options are limited for management of this destructive disease caused by the bacterial pathogen Erwinia amylovora. A broad, large-effect quantitative trait locus (QTL) for fire blight resistance has been reported on linkage group 3 of Malus 'Robusta 5'. In this study we identified markers derived from putative fire blight resistance genes associated with the QTL by integrating further genetic mapping studies with bioinformatics analysis of transcript profiling data and genome sequence databases. RESULTS: When several defined E.amylovora strains were used to inoculate three progenies from international breeding programs, all with 'Robusta 5' as a common parent, two distinct QTLs were detected on linkage group 3, where only one had previously been mapped. In the New Zealand 'Malling 9' X 'Robusta 5' population inoculated with E. amylovora ICMP11176, the proximal QTL co-located with SNP markers derived from a leucine-rich repeat, receptor-like protein (MxdRLP1) and a closely linked class 3 peroxidase gene. While the QTL detected in the German 'Idared' X 'Robusta 5' population inoculated with E. amylovora strains Ea222_JKI or ICMP11176 was approximately 6 cM distal to this, directly below a SNP marker derived from a heat shock 90 family protein gene (HSP90). In the US 'Otawa3' X 'Robusta5' population inoculated with E. amylovora strains Ea273 or E2002a, the position of the LOD score peak on linkage group 3 was dependent upon the pathogen strains used for inoculation. One of the five MxdRLP1 alleles identified in fire blight resistant and susceptible cultivars was genetically associated with resistance and used to develop a high resolution melting PCR marker. A resistance QTL detected on linkage group 7 of the US population co-located with another HSP90 gene-family member and a WRKY transcription factor previously associated with fire blight resistance. However, this QTL was not observed in the New Zealand or German populations. CONCLUSIONS: The results suggest that the upper region of 'Robusta 5' linkage group 3 contains multiple genes contributing to fire blight resistance and that their contributions to resistance can vary depending upon pathogen virulence and other factors. Mapping markers derived from putative fire blight resistance genes has proved a useful aid in defining these QTLs and developing markers for marker-assisted breeding of fire blight resistance.


Subject(s)
Disease Resistance/genetics , Erwinia amylovora , Malus/genetics , Plant Diseases/genetics , Quantitative Trait Loci , Chromosome Mapping , Genetic Linkage , Genetic Markers , Malus/immunology , Plant Diseases/immunology
16.
Physiol Mol Biol Plants ; 17(3): 305-11, 2011 Jul.
Article in English | MEDLINE | ID: mdl-23573023

ABSTRACT

The amplified fragment length polymorphism (AFLP) technique was used to examine the genetic relationships among 21 Iranian soft-seeded pomegranate (Punica granatum L.) genotypes. Out of 72 fluorescent-AFLP primer combinations screened, 31 were selected to produce the 503 polymorphic markers used in this study. Genetic similarity estimates between genotypes, calculated by the Jaccard's similarity coefficient, ranged from 0.17 to 1.00, while the cophenetic correlation coefficient between the genetic similarities and the unweighted pair group method of arithmetic averages (UPGMA) dendrogram was 0.98. The AFLP-based UPGMA dendrogram revealed two groups within the genotypes at 0.33 similarity coefficient, which reflect fruit traits such as peel and aril color, and seed firmness, as well as region of origin. Our study shows that the use of molecular markers is essential during all steps of germplasm management to avoid genotype redundancy and mislabeling. The present study will be used as a reliable reference to discriminate among these genotypes, to aid management of germplasm collections used to breed new varieties for the Iranian pomegranate industry.

SELECTION OF CITATIONS
SEARCH DETAIL
...