Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 5079, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871703

ABSTRACT

Hybrid glasses derived from meltable metal-organic frameworks (MOFs) promise to combine the intriguing properties of MOFs with the universal processing ability of glasses. However, the shaping of hybrid glasses in their liquid state - in analogy to conventional glass processing - has been elusive thus far. Here, we present optical-quality glasses derived from the zeolitic imidazole framework ZIF-62 in the form of cm-scale objects. These allow for in-depth studies of optical transparency and refraction across the ultraviolet to near-infrared spectral range. Fundamental viscosity data are reported using a ball penetration technique, and subsequently employed to demonstrate the fabrication of micro-optical devices by thermal imprinting. Using 3D-printed fused silica templates, we show that concave as well as convex lens structures can be obtained at high precision by remelting the glass without trading-off on material quality. This enables multifunctional micro-optical devices combining the gas uptake and permeation ability of MOFs with the optical functionality of glass. As an example, we demonstrate the reversible change of optical refraction upon the incorporation of volatile guest molecules.

2.
Opt Lett ; 49(8): 1872-1875, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621027

ABSTRACT

The coupling of light into optical fibers is limited by the numerical aperture (NA). Here, we show that large-area polymer axial-symmetric microstructures printed on silica multimode fibers improve their incoupling performance by two to three orders of magnitude beyond the numerical aperture limit. A ray-optical mathematical model describing the impact of the grating-assisted light coupling complements the experimental investigation. This study clearly demonstrates the improvement of incoupling performance by nanoprinting microstructures on fibers, opening new horizons, to the best of our knowledge, for multimode fiber applications in life sciences, quantum technologies, and "lab-on-fiber" devices.

4.
Nat Commun ; 14(1): 7222, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37940676

ABSTRACT

Structured light has proven useful for numerous photonic applications. However, the current use of structured light in optical fiber science and technology is severely limited by mode mixing or by the lack of optical elements that can be integrated onto fiber end-faces for wavefront engineering, and hence generation of structured light is still handled outside the fiber via bulky optics in free space. We report a metafiber platform capable of creating arbitrarily structured light on the hybrid-order Poincaré sphere. Polymeric metasurfaces, with unleashed height degree of freedom and a greatly expanded 3D meta-atom library, were 3D laser nanoprinted and interfaced with polarization-maintaining single-mode fibers. Multiple metasurfaces were interfaced on the fiber end-faces, transforming the fiber output into different structured-light fields, including cylindrical vector beams, circularly polarized vortex beams, and arbitrary vector field. Our work provides a paradigm for advancing optical fiber science and technology towards fiber-integrated light shaping, which may find important applications in fiber communications, fiber lasers and sensors, endoscopic imaging, fiber lithography, and lab-on-fiber technology.

5.
Sensors (Basel) ; 23(15)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37571649

ABSTRACT

In mobile applications such as geomagnetic surveying, two major effects hamper the use of optically pumped magnetometers: dead zones, sensor orientations where the sensors signal amplitude drops; and heading errors, a dependence of the measured magnetic field value on the sensor orientation. We present a concept for an omnidirectional magnetometer to overcome both of these effects. The sensor uses two cesium vapor cells, interrogated by circularly-polarized amplitude-modulated laser light split into two beams propagating perpendicular to each other. This configuration is experimentally investigated using a setup wherein the laser beam and magnetic field direction can be freely adjusted relative to each other within a magnetically shielded environment. We demonstrate that a dead-zone-free magnetometer can be realized with nearly isotropic magnetic-field sensitivity. While in the current configuration we observe heading errors emerging from light shifts and shifts due to the nonlinear Zeeman effect, we introduce a straightforward approach to suppress these systematic effects in an advanced sensor realization.

6.
Nat Commun ; 14(1): 3247, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37277352

ABSTRACT

Accurate characterization of diffusing nanoscale species is increasingly important for revealing processes at the nanoscale, with fiber-assisted nanoparticle-tracking-analysis representing a new and promising approach in this field. In this work, we uncover the potential of this approach for the characterization of very small nanoparticles (<20 nm) through experimental studies, statistical analysis and the employment of a sophisticated fiber and chip design. The central results is the characterization of diffusing nanoparticles as small as 9 nm with record-high precision, corresponding to the smallest diameter yet determined for an individual nanoparticle with nanoparticle-tracking-analysis using elastic light scattering alone. Here, the detectable scattering cross-section is limited only by the background scattering of the ultrapure water, thus reaching the fundamental limit of Nanoparticle-Tracking-Analysis in general. The obtained results outperform other realizations and allow access to previously difficult to address application fields such as understanding nanoparticle growth or control of pharmaceuticals.

7.
Sci Rep ; 12(1): 20920, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36463325

ABSTRACT

The generation of tailored light fields with spatially controlled intensity and phase distribution is essential in many areas of science and application, while creating such patterns remotely has recently defined a key challenge. Here, we present a fiber-compatible concept for the remote generation of complex multi-foci three-dimensional intensity patterns with adjusted relative phases between individual foci. By extending the well-known Huygens principle, we demonstrate, in simulations and experiments, that our interference-based approach enables controlling of both intensity and phase of individual focal points in an array of spots distributed in all three spatial directions. Holograms were implemented using 3D nano-printing on planar substrates and optical fibers, showing excellent agreement between design and implemented structures. In addition to planar substrates, holograms were also generated on modified single-mode fibers, creating intensity distributions consisting of about 200 individual foci distributed over multiple image planes. The presented scheme yields an innovative pathway for phase-controlled 3D digital holography over remote distances, yielding an enormous potential application in fields such as quantum technology, life sciences, bioanalytics and telecommunications. Overall, all fields requiring precise excitation of higher-order optical resonances, including nanophotonics, fiber optics and waveguide technology, will benefit from the concept.

8.
ACS Sens ; 7(10): 2951-2959, 2022 10 28.
Article in English | MEDLINE | ID: mdl-36260351

ABSTRACT

Nanoparticle tracking analysis (NTA) is a widely used methodology to investigate nanoscale systems at the single species level. Here, we introduce the locally structured on-chip optofluidic hollow-core light cage, as a novel platform for waveguide-assisted NTA. This hollow waveguide guides light by the antiresonant effect in a sparse array of dielectric strands and includes a local modification to realize aberration-free tracking of individual nano-objects, defining a novel on-chip solution with properties specifically tailored for NTA. The key features of our system are (i) well-controlled nano-object illumination through the waveguide mode, (ii) diffraction-limited and aberration-free imaging at the observation site, and (iii) a high level of integration, achieved by on-chip interfacing to fibers. The present study covers all aspects relevant for NTA including design, simulation, implementation via 3D nanoprinting, and optical characterization. The capabilities of the approach to precisely characterize practically relevant nanosystems have been demonstrated by measuring the solvency-induced collapse of a nanoparticle system which includes polymer brush-based shells that react to changes in the liquid environment. Our study unlocks the advantages of the light cage approach in the context of NTA, suggesting its application in various areas such as bioanalytics, life science, environmental science, or nanoscale material science in general.


Subject(s)
Nanoparticles , Nanotechnology , Polymers
9.
Langmuir ; 38(40): 12325-12332, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36154138

ABSTRACT

Gold nanoparticles decorated with analyte recognition units can form the basis of colorimetric (bio)sensors. The presentation of those recognition units may play a critical role in determining sensor sensitivity. Herein, we use a model system to investigate the effect of the architecture of a polymeric linker that connects gold nanoparticles with the recognition units. Our results show that the number of the latter that can be adsorbed during the assembly of the colorimetric sensors depends on the linker topology. We also show that this may lead to substantial differences in colorimetric sensor performance, particularly in situations in which the interactions with the analyte are comparably weak. Finally, we discuss design principles for efficient colorimetric sensor materials based on our findings.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Biosensing Techniques/methods , Colorimetry/methods , Gold , Polymers
10.
Small ; 18(38): e2202024, 2022 09.
Article in English | MEDLINE | ID: mdl-35988130

ABSTRACT

Accurate determination of the size distribution of nanoparticle ensembles remains a challenge in nanotechnology-related applications due to the limitations of established methods. Here, a microstructured fiber-assisted nanoparticle tracking analysis (FaNTA) realization is introduced that breaks existing limitations through the recording of exceptionally long trajectories of rapidly diffusing polydisperse nanoparticles, resulting in excellent sizing precision and unprecedented separation capabilities of bimodal nanoparticle mixtures. An effective-single-mode antiresonant-element fiber allows to efficiently confine nanoparticles in a light-guiding microchannel and individually track them over more than 1000 frames, while aberration-free imaging is experimentally confirmed by cross-correlation analysis. Unique features of the approach are (i) the highly precise determination of the size distribution of monodisperse nanoparticle ensembles (only 7% coefficient of variation) and (ii) the accurate characterization of individual components in a bimodal mixture with very close mean diameters, both experimentally demonstrated for polymer nanospheres. The outstanding performance of the FaNTA realization can be quantified by introducing a new model for the bimodal separation index. Since FaNTA is applicable to all types of nano-objects down to sub-20 nm diameters, the method will improve the precision standard of mono- and polydisperse nanoparticle samples such as nano-plastics or extracellular vesicles.


Subject(s)
Nanoparticles , Nanospheres , Microplastics , Nanoparticles/analysis , Nanotechnology , Particle Size , Polymers
11.
ACS Sens ; 5(3): 879-886, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32103665

ABSTRACT

Tracking and analyzing the individual diffusion of nanoscale objects such as proteins and viruses is an important methodology in life science. Here, we show a sensor that combines the efficiency of light line illumination with the advantages of fluidic confinement. Tracking of freely diffusing nano-objects inside water-filled hollow core fibers with core diameters of tens of micrometers using elastically scattered light from the core mode allows retrieving information about the Brownian motion and the size of each particle of the investigated ensemble individually using standard tracking algorithms and the mean squared displacement analysis. Specifically, we successfully measure the diameter of every gold nanosphere in an ensemble that consists of several hundreds of 40 nm particles, with an individual precision below 17% (±8 nm). In addition, we confirm the relevance of our approach with respect to bioanalytics by analyzing 70 nm λ-phages. Overall these features, together with the strongly reduced demand for memory space, principally allows us to record thousands of frames and to achieve high frame rates for high precision tracking of nanoscale objects.


Subject(s)
Gold , Metal Nanoparticles , Motion , Nanospheres , Bacteriophage lambda , Diffusion
12.
Phys Rev Lett ; 123(21): 213903, 2019 Nov 22.
Article in English | MEDLINE | ID: mdl-31809183

ABSTRACT

We experimentally observe an effective PT-phase transition through the exceptional point in a hybrid plasmonic-dielectric waveguide system. Transmission experiments reveal fundamental changes in the underlying eigenmode interactions as the environmental refractive index is tuned, which can be unambiguously attributed to a crossing through the plasmonic exceptional point. These results extend the design opportunities for tunable non-Hermitian physics to plasmonic systems.

13.
Adv Sci (Weinh) ; 4(4): 1600299, 2017 04.
Article in English | MEDLINE | ID: mdl-28435773

ABSTRACT

Magnetooptical (MO) glasses and, in particular, Faraday rotators are becoming key components in lasers and optical information processing, light switching, coding, filtering, and sensing. The common design of such Faraday rotator materials follows a simple path: high Faraday rotation is achieved by maximizing the concentration of paramagnetic ion species in a given matrix material. However, this approach has reached its limits in terms of MO performance; hence, glass-based materials can presently not be used efficiently in thin film MO applications. Here, a novel strategy which overcomes this limitation is demonstrated. Using vitreous films of xFeO·(100 - x)SiO2, unusually large Faraday rotation has been obtained, beating the performance of any other glassy material by up to two orders of magnitude. It is shown that this is due to the incorporation of small, ferromagnetic clusters of atomic iron which are generated in line during laser deposition and rapid condensation of the thin film, generating superparamagnetism. The size of these clusters underbids the present record of metallic Fe incorporation and experimental verification in glass matrices.

14.
Opt Lett ; 41(15): 3519-22, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27472608

ABSTRACT

We reveal the potential of step-index fibers consisting of a metaphosphate glass core and a silica cladding as an ultrafast octave-spanning supercontinuum source. The hybrid waveguide was fabricated by pressure-assisted melt filling and possesses a sophisticated dispersion behavior with two zero-dispersion points in the proximity of the Erbium laser bands. The fiber generates an octave-spanning supercontinuum from 0.7 to 2.4 µm if pumped at 1.56 µm with 30 fs pulses and energies as low as 300 pJ. Numerical simulations reveal soliton fission and double dispersive wave generation as the dominant broadening effect. This study highlights phosphate glasses as a promising new candidate for the next generation of broadband photonic devices, as they allow for high rare earth-doping levels and dispersion posttuning via plasmonic nanoparticle growth.

15.
Opt Express ; 24(4): 3258-67, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26906989

ABSTRACT

Phosphate glasses represent promising candidates for next-generation photonic devices due to their unique characteristics, such as vastly tunable optical properties, and high rare earth solubility. Here we show that silver metaphosphate wires with bulk optical properties and diameters as small as 2 µm can be integrated into silica fibers using pressure-assisted melt filling. By analyzing two types of hybrid metaphosphate-silica fibers, we show that the filled metaphosphate glass has only negligible higher attenuation and a refractive index that is identical to the bulk material. The presented results pave the way towards new fiber-type optical devices relying on metaphosphate glasses, which are promising materials for applications in nonlinear optics, sensing and spectral filtering.

16.
Sci Rep ; 5: 17060, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26593209

ABSTRACT

Due to the ongoing improvement in nanostructuring technology, ultrathin metallic nanofilms have recently gained substantial attention in plasmonics, e.g. as building blocks of metasurfaces. Typically, noble metals such as silver or gold are the materials of choice, due to their excellent optical properties, however they also possess some intrinsic disadvantages. Here, we introduce niobium nanofilms (~10 nm thickness) as an alternate plasmonic platform. We demonstrate functionality by depositing a niobium nanofilm on a plasmonic fiber taper, and observe a dielectric-loaded niobium surface-plasmon excitation for the first time, with a modal attenuation of only 3-4 dB/mm in aqueous environment and a refractive index sensitivity up to 15 µm/RIU if the analyte index exceeds 1.42. We show that the niobium nanofilm possesses bulk optical properties, is continuous, homogenous, and inert against any environmental influence, thus possessing several superior properties compared to noble metal nanofilms. These results demonstrate that ultrathin niobium nanofilms can serve as a new platform for biomedical diagnostics, superconducting photonics, ultrathin metasurfaces or new types of optoelectronic devices.

17.
Talanta ; 125: 107-13, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24840422

ABSTRACT

We present a novel design for a compact flow-through fluorescence detector for flow analyses applications and prove its functionality in the experiment. The detector operates by detecting the diffusely emitted fluorescence in a glass capillary, which is a measure for the concentration of the analyte to be detected. The fluorescence is excited via an axially coupled fibre providing LED light and is collected by a photodiode. As model analyte we used dissolved reactive phosphate. The determination of the phosphate concentration is based on the reaction of molybdate to phosphomolybdate, which quenches the fluorescence of Rhodamine 6G. The experiments rely on a reversed flow injection analysis system especially designed for decoupling the analytical setup from environmental pressure for in situ applications. By combining the optics part and the fluidic setup a measuring range of 0-40 µg L(-1) PO4-P with detection limits of 0.22 µg L(-1) PO4-P (7 nmol L(-1)) for water and of 0.45 µg L(-1) PO4-P (14.5 nmol L(-1)) for seawater have been obtained. Our novel system has a sampling frequency of up to 300 samples per hour and achieves a repeatability between 0.6% (RSD) for the blank value signal (n=15) and 4.6% (RSD) for a phosphate concentration of 20.8 µg L(-1) PO4-P (n=15).


Subject(s)
Flow Injection Analysis/methods , Phosphates/analysis , Seawater/analysis , Water Pollutants, Chemical/analysis , Equipment Design , Flow Injection Analysis/instrumentation , Fluorescence , Limit of Detection , Molybdenum/chemistry , Optics and Photonics , Phosphoric Acids/chemistry , Pressure , Reproducibility of Results , Rhodamines/chemistry , Salinity , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...