Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Biotechnol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997579

ABSTRACT

RNA oligonucleotides have emerged as a powerful therapeutic modality to treat disease, yet current manufacturing methods may not be able to deliver on anticipated future demand. Here, we report the development and optimization of an aqueous-based, template-independent enzymatic RNA oligonucleotide synthesis platform as an alternative to traditional chemical methods. The enzymatic synthesis of RNA oligonucleotides is made possible by controlled incorporation of reversible terminator nucleotides with a common 3'-O-allyl ether blocking group using new CID1 poly(U) polymerase mutant variants. We achieved an average coupling efficiency of 95% and demonstrated ten full cycles of liquid phase synthesis to produce natural and therapeutically relevant modified sequences. We then qualitatively assessed the platform on a solid phase, performing enzymatic synthesis of several N + 5 oligonucleotides on a controlled-pore glass support. Adoption of an aqueous-based process will offer key advantages including the reduction of solvent use and sustainable therapeutic oligonucleotide manufacturing.

2.
ACS Nano ; 15(1): 489-502, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33370106

ABSTRACT

DNA polymerases have revolutionized the biotechnology field due to their ability to precisely replicate stored genetic information. Screening variants of these enzymes for specific properties gives the opportunity to identify polymerases with different features. We have previously developed a single-molecule DNA sequencing platform by coupling a DNA polymerase to an α-hemolysin pore on a nanopore array. Here, we use this approach to demonstrate a single-molecule method that enables rapid screening of polymerase variants in a multiplex manner. In this approach, barcoded DNA strands are complexed with polymerase variants and serve as templates for nanopore sequencing. Nanopore sequencing of the barcoded DNA reveals both the barcode identity and kinetic properties of the polymerase variant associated with the cognate barcode, allowing for multiplexed investigation of many polymerase variants in parallel on a single nanopore array. Further, we develop a robust classification algorithm that discriminates kinetic characteristics of the different polymerase mutants. As a proof of concept, we demonstrate the utility of our approach by screening a library of ∼100 polymerases to identify variants for potential applications of biotechnological interest. We anticipate our screening method to be broadly useful for applications that require polymerases with altered physical properties.


Subject(s)
Nanopores , DNA , DNA-Directed DNA Polymerase , Kinetics , Sequence Analysis, DNA
3.
Nat Commun ; 11(1): 5246, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067441

ABSTRACT

New storage technologies are needed to keep up with the global demands of data generation. DNA is an ideal storage medium due to its stability, information density and ease-of-readout with advanced sequencing techniques. However, progress in writing DNA is stifled by the continued reliance on chemical synthesis methods. The enzymatic synthesis of DNA is a promising alternative, but thus far has not been well demonstrated in a parallelized manner. Here, we report a multiplexed enzymatic DNA synthesis method using maskless photolithography. Rapid uncaging of Co2+ ions by patterned UV light activates Terminal deoxynucleotidyl Transferase (TdT) for spatially-selective synthesis on an array surface. Spontaneous quenching of reactions by the diffusion of excess caging molecules confines synthesis to light patterns and controls the extension length. We show that our multiplexed synthesis method can be used to store digital data by encoding 12 unique DNA oligonucleotide sequences with video game music, which is equivalent to 84 trits or 110 bits of data.


Subject(s)
DNA Nucleotidylexotransferase/chemistry , DNA/chemical synthesis , DNA/chemistry , Information Storage and Retrieval , Oligonucleotide Array Sequence Analysis , Oligonucleotides/chemical synthesis , Oligonucleotides/chemistry , Ultraviolet Rays
4.
ACS Chem Biol ; 15(7): 1852-1861, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32603088

ABSTRACT

We report a tunable chemical genetics approach for enhancing genetic code expansion in different wild-type bacterial strains that employ apidaecin-like, antimicrobial peptides observed to temporarily sequester and thereby inhibit Release Factor 1 (RF1). In a concentration-dependent matter, these peptides granted a conditional lambda phage resistance to a recoded Escherichia coli strain with nonessential RF1 activity and promoted multisite nonstandard amino acid (nsAA) incorporation at in-frame amber stop codons in vivo and in vitro. When exogenously added, the peptides stimulated specific nsAA incorporation in a variety of sensitive, wild-type (RF1+) strains, including Agrobacterium tumefaciens, a species in which nsAA incorporation has not been previously reported. Improvement in nsAA incorporation was typically 2-15-fold in E. coli BL21, MG1655, and DH10B strains and A. tumefaciens with the >20-fold improvement observed in probiotic E. coli Nissle 1917. In-cell expression of these peptides promoted multisite nsAA incorporation in transcripts with up to 6 amber codons, with a >35-fold increase in BL21 showing moderate toxicity. Leveraging this RF1 sensitivity allowed multiplexed partial recoding of MG1655 and DH10B that rapidly resulted in resistant strains that showed an additional approximately twofold boost to nsAA incorporation independent of the peptide. Finally, in-cell expression of an apidaecin-like peptide library allowed the discovery of new peptide variants with reduced toxicity that still improved multisite nsAA incorporation >25-fold. In parallel to genetic reprogramming efforts, these new approaches can facilitate genetic code expansion technologies in a variety of wild-type bacterial strains.


Subject(s)
Amino Acids/metabolism , Antimicrobial Cationic Peptides/pharmacology , Peptide Termination Factors/antagonists & inhibitors , Protein Biosynthesis/physiology , Proteins/metabolism , Antimicrobial Cationic Peptides/genetics , Bacteria/drug effects , Genetic Code , Mutation , Peptide Library , Saccharomyces cerevisiae/drug effects
5.
J Vis Exp ; (145)2019 03 14.
Article in English | MEDLINE | ID: mdl-30933074

ABSTRACT

The marine bacterium Vibrio natriegens has garnered considerable attention as an emerging microbial host for biotechnology due to its fast growth rate. A general protocol is described for the preparation of V. natriegens crude cell extracts using common laboratory equipment. This high yielding protocol has been specifically optimized for user accessibility and reduced cost. Cell-free protein synthesis (CFPS) can be carried out in small scale 10 µL batch reactions in either a 96- or 384-well format and reproducibly yields concentrations of > 260 µg/mL super folder GFP (sfGFP) within 3 h. Overall, crude cell extract preparation and CFPS can be achieved in 1-2 full days by a single user. This protocol can be easily integrated into existing protein synthesis pipelines to facilitate advances in bio-production and synthetic biology applications.


Subject(s)
Biochemistry/methods , Protein Biosynthesis , Vibrio/cytology , Vibrio/growth & development , Centrifugation , Freezing , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sonication
6.
ACS Synth Biol ; 7(10): 2475-2479, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30160938

ABSTRACT

The fast growing bacterium Vibrio natriegens is an emerging microbial host for biotechnology. Harnessing its productive cellular components may offer a compelling platform for rapid protein production and prototyping of metabolic pathways or genetic circuits. Here, we report the development of a V. natriegens cell-free expression system. We devised a simplified crude extract preparation protocol and achieved >260 µg/mL of superfolder GFP in a small-scale batch reaction after 3 h. Culturing conditions, including growth media and cell density, significantly affect translation kinetics and protein yield of extracts. We observed maximal protein yield at incubation temperatures of 26 or 30 °C, and show improved yield by tuning ions crucial for ribosomal stability. This work establishes an initial V. natriegens cell-free expression system, enables probing of V. natriegens biology, and will serve as a platform to accelerate metabolic engineering and synthetic biology applications.


Subject(s)
Cell-Free System , Vibrio/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Protein Biosynthesis , Synthetic Biology/methods , Vibrio/genetics
7.
Nat Methods ; 12(4): 326-8, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25730490

ABSTRACT

The RNA-guided nuclease Cas9 can be reengineered as a programmable transcription factor. However, modest levels of gene activation have limited potential applications. We describe an improved transcriptional regulator obtained through the rational design of a tripartite activator, VP64-p65-Rta (VPR), fused to nuclease-null Cas9. We demonstrate its utility in activating endogenous coding and noncoding genes, targeting several genes simultaneously and stimulating neuronal differentiation of human induced pluripotent stem cells (iPSCs).


Subject(s)
Endonucleases , Genetic Techniques , RNA, Guide, Kinetoplastida , Transcriptional Activation , Cell Differentiation/genetics , Endonucleases/genetics , HEK293 Cells , Humans , Induced Pluripotent Stem Cells , Neurons/cytology , Staphylococcus aureus
SELECTION OF CITATIONS
SEARCH DETAIL
...