Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 29(3): 376-391, 2023 03.
Article in English | MEDLINE | ID: mdl-36604113

ABSTRACT

A small group of bacteria encode two types of RNase P, the classical ribonucleoprotein (RNP) RNase P as well as the protein-only RNase P HARP (homolog of Aquifex RNase P). We characterized the dual RNase P activities of five bacteria that belong to three different phyla. All five bacterial species encode functional RNA (gene rnpB) and protein (gene rnpA) subunits of RNP RNase P, but only the HARP of the thermophile Thermodesulfatator indicus (phylum Thermodesulfobacteria) was found to have robust tRNA 5'-end maturation activity in vitro and in vivo in an Escherichia coli RNase P depletion strain. These findings suggest that both types of RNase P are able to contribute to the essential tRNA 5'-end maturation activity in T. indicus, thus resembling the predicted evolutionary transition state in the progenitor of the Aquificaceae before the loss of rnpA and rnpB genes in this family of bacteria. Remarkably, T. indicus RNase P RNA is transcribed with a P12 expansion segment that is posttranscriptionally excised in vivo, such that the major fraction of the RNA is fragmented and thereby truncated by ∼70 nt in the native T. indicus host as well as in the E. coli complementation strain. Replacing the native P12 element of T. indicus RNase P RNA with the short P12 helix of Thermotoga maritima RNase P RNA abolished fragmentation, but simultaneously impaired complementation efficiency in E. coli cells, suggesting that intracellular fragmentation and truncation of T. indicus RNase P RNA may be beneficial to RNA folding and/or enzymatic activity.


Subject(s)
Escherichia coli , Ribonuclease P , Ribonuclease P/metabolism , Escherichia coli/metabolism , Bacteria/genetics , RNA, Bacterial/metabolism , RNA, Transfer/genetics
2.
Methods Mol Biol ; 2300: 41-58, 2021.
Article in English | MEDLINE | ID: mdl-33792870

ABSTRACT

Successful detection of very small RNAs (tiny RNAs, ~8-15 nt in length) by northern blotting depends on tailored protocols with respect to transfer and immobilization on membranes as well as design of sensitive detection probes. For RNA crosslinking to positively charged membranes, we compared UV light with chemical RNA crosslinking by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC), using either denaturing or native polyacrylamide gels. We show that northern blot detection of tiny RNAs with 5'-digoxigenin-labeled DNA/LNA mixmer probes is a highly sensitive and specific method and, in our hands, more sensitive than using a corresponding DNA/LNA mixmer probe with a 5'-32P-end-label. Furthermore, we provide a robust protocol for northern blot analysis of noncoding RNAs of intermediate size (~50-400 nt).


Subject(s)
Cross-Linking Reagents/chemistry , DNA Probes/metabolism , Ethyldimethylaminopropyl Carbodiimide/chemistry , RNA/analysis , Blotting, Northern , DNA Probes/chemistry , Denaturing Gradient Gel Electrophoresis , Digoxigenin/chemistry , Native Polyacrylamide Gel Electrophoresis , RNA/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...