Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
2.
Inorg Chem ; 40(26): 6656-65, 2001 Dec 17.
Article in English | MEDLINE | ID: mdl-11735476

ABSTRACT

Reactions of the LCr(III) unit with an in situ prepared M(PyA)(3)(n-) ion, where L represents 1,4,7-trimethyl-1,4,7-triazacyclononane and PyA(-) is the monoanion of pyridine-2-aldoxime, yield heterodinuclear complexes of general formula [LCr(III)(PyA)(3)M](2+/3+) as perchlorate salts, where M = Cr(II) (1), Mn(II) (2), low-spin Fe(II) (3), Ni(II) (4), Cu(II) (5), Zn(II) (6), and low-spin Co(III) (7). These compounds contain three oximato anions as bridging ligands. The hexadentate ligand with the identical donor atoms, tris(2-aldoximato-6-pyridyl)phosphine, P(PyA)(3), has been employed to prepare a second Cr(III)Ni(II) species 8, whose magnetic properties differ significantly from those of 4. Complexes 1-8 have been characterized on the basis of elemental analysis, mass spectrometry, IR, UV-vis, Mössbauer, and EPR spectroscopies, and variable-temperature (2-295 K) magnetic susceptibility measurements. They are isostructural in the sense that they all contain a terminal Cr(III) ion in a distorted octahedral environment, CrN(3)O(3), and a second six-coordinated metal ion M in a mostly trigonal prismatic MN(6) geometry. The crystal structures of the perchlorate salts of 2-5, 7, and 8 have been determined by X-ray crystallography at 100 K. The structures consist of mixed-metal Cr(III)M(II) and Cr(III)Co(III) complexes with a geometry in which two pseudooctahedral polyhedra are joined by three oximato (=N-O(-)) groups, with an intramolecular Cr.M(Co) distance in the range of 3.4-3.7 A. The cyclic voltammograms of the complexes reveal ligand oxidation and reduction processes, and in addition, metal-centered oxidation processes have been observed. X-band EPR spectroscopy has been used to establish the electronic ground state of the heterodinuclear complexes. Analysis of the susceptibility data indicates the presence of weak exchange interactions, both ferro- and antiferromagnetic, between the paramagnetic centers. A qualitative rationale on the basis of the Goodenough-Kanamori rules is provided for the difference in magnetic behaviors.

3.
J Am Chem Soc ; 123(41): 10012-23, 2001 Oct 17.
Article in English | MEDLINE | ID: mdl-11592879

ABSTRACT

The ligand 2-mercapto-3,5-di-tert-butylaniline, H[L(AP)], an o-aminothiophenol, reacts with metal(II) salts of Ni and Pd in CH3CN or C2H5OH in the presence of NEt3 under strictly anaerobic conditions with formation of beige to yellow cis-[M(II)(L(AP))2] (M = Ni (1), Pd (2)) where (L(AP))1- represents the o-aminothiophenolate(1-) form. The crystal structure of cis-[Pd(II)(L(AP))2][HN(C2H5)3][CH3CO2] has been determined by X-ray crystallography. In the presence of air the same reaction produces dark blue solutions from which mixtures of the neutral complexes trans/cis-[M(II)(L(ISQ))2] (M = Ni (1a/1b), Pd (2a/2b), and Pt (3a/3b)) have been isolated as dark blue-black solid materials. By using HPLC the mixture of 3a/3b has been separated into pure samples of 3a and 3b, respectively; (L(ISQ))1- represents the o-iminothionebenzosemiquinonate(1-) pi-radical. The structures of 1a.dmf and 3a.CH2Cl2 have also been determined. All compounds are square-planar and diamagnetic. 1H NMR spectroscopy established the cis <==> trans equilibrium of 1a/1b, 2a/2b, and 3a/3b in CH2Cl2 solution where the isomerization rate is very fast for the Ni, intermediate for the Pd, and very slow for the Pt species. It is shown that the electronic structures of 1a/1b, 2a/2b, 3a, and 3b are best described as diradicals with a singlet ground state. The spectro- and electrochemistries of all complexes display the usual full electron transfer series where the monocation, the neutral species, the mono- and dianions have been spectroscopically characterized. X-band EPR spectra of the monocations [1a/1b]+ and [3a]+ support the assignment of an oxidation-state distribution as predominantly [M(II)(L(ISQ))(L(IBQ))]+ where (L(IBQ))0 represents the o-iminothionequinone level. In contrast, the EPR spectra of the monoanions [1a/1b]- and [3a]- indicate an [M(II)(L(ISQ))(L(AP)-H)]- distribution but with a significant contribution of the [M(I)(L(ISQ))(2)]- resonance hybrid; (L(AP)-H)2- represents the o-imidothiophenolato(2-) oxidation level. Analysis of the geometric features of 120 published structures of complexes containing ligands of the o-aminothiophenolate type show that high precision X-ray crystallography allows to discern the differing protonation and oxidation levels of these ligands. o-Aminothiophenolates are unequivocally shown to be noninnocent ligands; the (L(ISQ))1- radical form is quite prevalent in coordination compounds and the electronic structure of a number of published complexes must be reconsidered.

4.
Inorg Chem ; 40(17): 4157-66, 2001 Aug 13.
Article in English | MEDLINE | ID: mdl-11487318

ABSTRACT

The coordination chemistry of the ligands 2-anilino-4,6-di-tert-butylphenol, H[L(AP)], and N,N"'-bis[2-(4,6-di-tert-butylphenol]diethylenetriamine, H(2)[(L(AP))N(L(AP))], has been studied with the first-row transition metal ions V, Cr, Fe, and Co. The ligands are noninnocent in the sense that the aminophenolato parts, [L(AP)](-) and [L(AP)-H](2)(-), can be readily oxidized to their o-iminobenzosemiquinonato, [L(ISQ)](-), and o-iminobenzoquinone, [L(ISB)], forms. The following neutral octahedral complexes have been isolated as crystalline materials, and their crystal structures have been determined by X-ray crystallography at 100 K: [Cr(III)(L(ISQ))(3)] (1), [Fe(III)(L(ISQ))(3)] (2), [Co(III)(L(ISQ))(3)] (3), [V(V)(L(ISQ))(L(AP)-H)(2)] (4), [V(V)(L(AP)-H)(2)(L(AP))] (5), and [V(V)O[(L(AP))N(L(AP)-H)]] (6). From variable-temperature magnetic susceptibility measurements and X-band EPR spectroscopy it has been established that they possess the ground states: 1, S = 0; 2, S = 1; 3, S = (3)/(2); 4, S = (1)/(2); 5, S = 0; 6, S = 0. The o-iminobenzosemiquinonato radicals (S(rad) = (1)/(2)) couple strongly intramolecularly antiferromagnetically to singly occupied orbitals of the t(2g) subshell at the respective metal ion but ferromagnetically to each other in 3 containing a Co(III) ion with a filled t(2g)(6) subshell. It is demonstrated that the oxidation level of the ligands and metal ions can be unequivocally determined by high-quality X-ray crystallography in conjunction with EPR, UV-vis, and Mössbauer spectroscopies. The spectro- and electrochemistry of these complexes have also been studied in detail. Metal- and ligand-based redox chemistry has been observed. The molecular and electronic structures are compared with those of their o-semiquinonato analogues.

5.
Inorg Chem ; 40(17): 4191-8, 2001 Aug 13.
Article in English | MEDLINE | ID: mdl-11487322

ABSTRACT

From the reaction of Li(cyclam-acetate), MnCl(2).4H(2)O, and KPF(6) in methanol brown microcrystals of [Mn(III)Cl(cyclam-acetato)]PF(6) (1) were obtained in the presence of air (cyclam-acetic acid = 1,4,8,11-tetraazacyclotetradecane-1-acetic acid). The reaction of 1 in aqueous NH(3) solution with NaOCl produced blue crystals of [Mn(V)N(cyclam-acetato)]PF(6) (2). Complexes 1 and 2 were characterized by single-crystal X-ray crystallography, IR and Raman, electronic absorption, and (1)H, (13)C, and (15)N NMR spectroscopies. Their magnetochemistry as well as their electrochemistry have been investigated. The complexes [MnN(cyclam-acetato)](+/2+) were studied by theoretical calculations at the DFT and semiempirical levels in order to obtain more insight into the ground and excited states of the Mn(V)(triple bond)N unit. Structural and spectroscopic parameters were successfully calculated and compared to experiment. A pictorial description of the bonding has been developed.

6.
Inorg Chem ; 40(18): 4649-55, 2001 Aug 27.
Article in English | MEDLINE | ID: mdl-11511211

ABSTRACT

A series of complexes ML2(x+) (M = Mn-Zn, L = 2,6-bis(iminomethyl)pyridine) was investigated by theoretical methods. Electron transfer from the metal "t(2g)" orbitals to the ligand pi orbitals is reflected in the elongation of ligand C-N bonds and shortening of the C(py)-C(imine) bonds. Using zinc complexes as references, these deformations could be used to quantify the number of electrons transferred. Strong transfer is found in low-spin MnL2(+) (ca. 2 e) and in high-spin MnL2(+) and low-spin MnL2(2+), FeL2(2+), and CoL2(+) (ca. 1 e each). Smaller transfer is found in CoL(2)(2+), and the transfer is insignificant in high-spin MnL2(2+), NiL2(2+), and CuL2(2+). Analysis of the unpaired electron density on the metal (using the Staroverov-Davidson method) shows that the contribution of a biradical description, in which ligand radical anions are antiferromagnetically coupled to the metal center, is significant in most cases. In the case of CoL2(+) and high-spin MnL2(+), where the metal-ligand bond is weakened, it amounts to over 50% of the total transfer.

7.
J Am Chem Soc ; 123(10): 2186-95, 2001 Mar 14.
Article in English | MEDLINE | ID: mdl-11456864

ABSTRACT

The design and chemical synthesis of de novo metalloproteins on cellulose membranes with the structure of an antiparallel four-helix bundle is described. All possible combinations of three different sets of amphiphilic helices were assembled on cyclic peptide templates which were bound by a cleavable linker to the cellulose. In the hydrophobic interior, the four-helix bundle proteins carry a cysteine and several histidines at various positions for copper ligation. This approach was used successfully to synthesize, for the first time, copper proteins based on a four-helix bundle. UV-vis spectra monitored on the solid support showed ligation of copper(II) by about one-third out of the 96 synthesized proteins and tetrahedral complexes of cobalt(II) by most of these proteins. Three of the most stable copper-binding proteins were synthesized in solution and their structural properties analyzed by spectroscopic methods. Circular dichroism, one-dimensional NMR, and size-exclusion chromatography indicate a folding into a compact state containing a high degree of secondary structure with a reasonably ordered hydrophobic core. They displayed UV-vis absorption, resonance Raman, and EPR spectra intermediate between those of type 1 and type 2 copper centers. The present approach provides a sound basis for further optimizing the copper binding and its functional properties by using combinatorial protein chemistry guided by rational principles.


Subject(s)
Copper/metabolism , Proteins/chemical synthesis , Binding Sites , Chromatography, Gel , Circular Dichroism , Electron Spin Resonance Spectroscopy , Magnetic Resonance Spectroscopy , Proteins/chemistry , Spectrophotometry, Ultraviolet , Spectrum Analysis, Raman
8.
J Am Chem Soc ; 123(10): 2213-23, 2001 Mar 14.
Article in English | MEDLINE | ID: mdl-11456867

ABSTRACT

The ligand 2-anilino-4,6-di-tert-butylphenol and its 2-(3,5-dichloroanilino)-4,6-di-tert-butylphenol analogue react in CH(3)CN or CH(3)OH solutions with divalent transition metal ions in the presence of air and triethylamine. Depending on the metal:ligand ratio (1:1, 1:2, or 1:3) and the presence (or absence) of the cyclic amine 1,4-dimethyl-1,4,7-triazacyclononane (dmtacn), the following complexes have been isolated as crystalline solids: [Co(III)(L(ISQ))(3)] (1); [Cu(II)(dmtacn)(L(ISQ))]PF(6) (2); [Cu(II)(L(ISQ))(2)] (3); [Ni(II)(L(ISQ))(2)] (4a); [Ni(II)((Cl)L(ISQ))(2)] (4b); [Pd(II)(L(ISQ))(2)] (5). (L(ISQ))(-) represents the monoanionic o-iminobenzosemiquinonate radical (S(rad) = (1)/(2)). Compounds 1-5 have been characterized by single-crystal X-ray crystallography at 100(2) K. For all complexes it is unambiguously established that the O,N-coordinated o-iminobenzosemiquinonato(1-) ligand is present. Complexes 3, 4b, and 5 are square planar molecules which possess an S(t) = (1)/(2), 0, and 0 ground state, respectively, as was established by (1)H NMR and EPR spectroscopies and variable-temperature magnetic susceptibility measurements. Complex 2 possesses an S(t) = 1 ground state which is attained via strong intramolecular ferromagnetic coupling (J = +195 cm(-1)) between the d(x)2-(y)2 magnetic orbital of the Cu(II) ion and the pi-orbital of the ligand radical. Complex 1 contains three mutually orthogonal (L(ISQ))(-*) ligands and has an S(t) = (3)/(2) ground state. It is shown that the electronic structure of 4a and 5 is adequately described as singlet diradical containing a divalent, diamagnetic d(8) configurated central metal ion and two strongly antiferromagnetically coupled (L(ISQ))(-) radical ligands. It is concluded that the same electronic structure prevails in the classic bis(o-diiminobenzosemiquinonato)- and bis(o-benzosemiquinonato)metal complexes of Ni(II), Pd(II), and Pt(II). The electrochemistry of all complexes has been investigated in detail. For 3, 4a, and 5 a series of reversible one-electron-transfer waves leads to the formation of the anions and cations [M(L)(2)](2-),(1-),(1+),(2+) which have been characterized spectroelectrochemically. All redox processes are shown to be ligand-based.

9.
J Am Chem Soc ; 123(25): 6025-39, 2001 Jun 27.
Article in English | MEDLINE | ID: mdl-11414836

ABSTRACT

Three hexadentate, asymmetric pendent arm macrocycles containing a 1,4,7-triazacyclononane-1,4-diacetate backbone and a third, N-bound phenolate or thiophenolate arm have been synthesized. In [L(1)](3)(-) the third arm is 3,5-di-tert-butyl-2-hydroxybenzyl, in [L(2)](3)(-) it is 2-mercaptobenzyl, and in [L(3)](3)(-) it is 3,5-di-tert-butyl-2-mercaptobenzyl. With trivalent metal ions these ligands form very stable neutral mononuclear complexes [M(III)L(1)] (M = Ga, Fe, Co), [M(III)L(2)] (M = Ga, Fe, Co), and [M(III)L(3)] (M = Ga, Co) where the gallium and cobalt complexes possess an S = 0 and the iron complexes an S = (5)/(2) ground state. Complexes [CoL(1)].CH(3)OH.1.5H(2)O, [CoL(3)].1.17H(2)O, [FeL(1)].H(2)O, and [FeL(2)] have been characterized by X-ray crystallography. Cyclic voltammetry shows that all three [M(III)L(1)] complexes undergo a reversible, ligand-based, one-electron oxidation generating the monocations [M(III)L(1)(*)](+) which contain a coordinated phenoxyl radical as was unambiguously established by their electronic absorption, EPR, and Mössbauer spectra. In contrast, [M(III)L(2)] complexes in CH(3)CN solution undergo an irreversible one-electron oxidation where the putative thiyl radical monocationic intermediates dimerize with S-S bond formation yielding dinuclear disulfide species [M(III)L(2)-L(2)M(III)](2+). [GaL(3)] behaves similarly despite the steric bulk of two tertiary butyl groups at the 3,5-positions of the thiophenolate, but [Co(III)L(3)] in CH(2)Cl(2) at -20 to -61 degrees C displays a reversible one-electron oxidation yielding a relatively stable monocation [Co(III)L(3)(*)](+). Its electronic spectrum displays intense transitions in the visible at 509 nm (epsilon = 2.6 x 10(3) M(-)(1) cm(-)(1)) and 670sh, 784 (1.03 x 10(3)) typical of a phenylthiyl radical. The EPR spectrum of this species at 90 K proves the thiyl radical to be coordinated to a diamagnetic cobalt(III) ion (g(iso) = 2.0226; A(iso)((59)Co) = 10.7 G).


Subject(s)
Cobalt/chemistry , Gallium/chemistry , Iron/chemistry , Phenols/chemistry , Sulfhydryl Compounds/chemistry , Dimerization , Free Radicals , Ligands , Mass Spectrometry , Models, Molecular , Molecular Conformation , Molecular Structure , Phenols/chemical synthesis , Structure-Activity Relationship , Sulfhydryl Compounds/chemical synthesis
10.
Inorg Chem ; 40(6): 1160-6, 2001 Mar 12.
Article in English | MEDLINE | ID: mdl-11300812

ABSTRACT

Synthesis, structural, and spectroscopic characterization of the linear cationic complex [LCr(III)(mu-[dmg)(3)Zn(II))Cr(III)L](2+) (1) in which L = 1,4,7-trimethyl-1,4,7-triazacyclononane and dmg is the dimethylglyoximato anion are reported. The Cr...Cr distance of 1 is 7 A. SQUID magnetic susceptibility measurements reveal the presence of long-range exchange interaction of the Cr(III) terminal ions, mediated by the diamagnetic Zn(II)(dmg)(3) "bridging ligand" (J(0) = -4.4 cm(-1), H(ex) = -2J(0)S(1)S(2), S(i) = 3/2). Multifrequency EPR measurements (S-, X-, Q-band) on frozen solutions were used to establish the intramolecular nature of the exchange coupling and to determine the zero-field splitting (ZFS) parameters and the anisotropic contributions of spin coupling. An effective spin Hamiltonian description was applied for interpretation of the spectra originating from the S(t) = 2 total spin manifold which included up to fourth-order terms for the ZFS. By the help of alternative simulations with the full coupling matrix for two spins S(i) = 3/2 (16 x 16) it could be shown that the higher-order terms in the effective description owe their origin to multiplet mixing due to competing single-ion ZFS (the absolute value of D(i) = 0.2 cm(-1)) and isotropic exchange interaction. The magnetic anisotropy related to dimer properties could be readily explained by dipolar coupling (j(z) = -0.012 cm(-1)). Implications for the interpretation of other integer-spin EPR spectra are discussed.

11.
Chemistry ; 7(2): 404-15, 2001 Jan 19.
Article in English | MEDLINE | ID: mdl-11271527

ABSTRACT

A concise outline of the known derivation of the singlet-triplet energy-gap equations within the symmetry-broken wavefunction framework is given. They allow a computation of the singlet-triplet energy gap for molecules that exhibit a weak antiferromagnetic coupling of electrons. The accuracy of the equations is assessed by computation of the singlet-triplet gaps in model Na2 molecules. Various antiferromagnetic coupling strengths are simulated by the use of different Na-Na bond lengths in the computations. The singlet-triplet energy gaps obtained with the different equations are compared with the gaps computed with the more accurate coupled-cluster methods. Subsequently, the equations are applied to an iminosemiquinone copper(II) complex found previously to have remarkable catalytic properties. The application is performed by employing wave-function equations but with quantities computed within the density functional framework. The electronic ground state of this complex is computed to be a singlet state, which is also the experimental finding. Moreover, the experimental geometry and the singlet-triplet gap are reasonably reproduced by the computation. A straightforward method to determine the magnetic orbitals is suggested and applied. We illustrate that the form of the magnetic orbitals indicates in a qualitative manner that hydrogen-atom abstraction should be a major reaction pathway of the iminosemiquinone copper(II) complex. Hydrogen-atom abstraction has been suggested previously to be the rate-determining step in a catalytic process initiated by the iminosemiquinone copper(II) complex. The results support the notion that the form of the magnetic orbitals might be a qualitative indicator for the reactivity of molecules that exhibit weak antiferromagnetic coupling.

13.
Inorg Chem ; 39(15): 3355-64, 2000 Jul 24.
Article in English | MEDLINE | ID: mdl-11196875

ABSTRACT

The well-known tetradentate ligand 1,2-bis(pyridine-2-carboxamido)benzenate(2-), (bpb)2-, and its 4,5-dichloro analogue, (bpc)2-, are shown to be "noninnocent" ligands in the sense that in coordination compounds they can exist in their radical one- and diamagnetic two-electron-oxidized forms (bpbox1)- and (bpbox2)0 (and (bpcox1)- and (bpcox2)0), respectively. Photolysis of high-spin [(n-Bu)4N][FeIII(bpb)(N3)2] and its (bpc)2- analogue in acetone solution at room temperature generates the diamagnetic dinuclear complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(N3)2] and its (bpc)2- analogue; the corresponding cyano complex [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2] has been prepared via N3- substitution by CN-. Photolysis in frozen acetonitrile solution produces a low-spin ferric species (S = 1/2) which presumably is [FeIII(bpbox2)(N)(N3)]-, as has been established by EPR and Mössbauer spectroscopy. The mononuclear complexes [(n-Bu)4N][FeIII(bpb)(CN2)] (low spin), [Et4N][CoIII(bpb)(CN)2] and Na[CoIII(bpc)-(CN)2].3CH3OH can be electrochemically or chemically one-electron-oxidized to give [FeIII(bpbox1)(CN)2]0 (S = 0), [CoIII(bpbox1)(CN)2]0 (S = 1/2), and [CoIII(bpcox1)(CN)2]0 (S = 1/2). All complexes have been characterized by UV-vis, EPR, and Mössbauer spectroscopy, and their electro- and magnetochemistries have been studied. The crystal structures of [(n-Bu)4N][FeIII(bpb)(N3)2].1/2C6H6CH3, Na[FeIII(bpb)(CN)2], Na[CoIII(bpc)(CN)2].3CH3OH, [(n-Bu)4N][FeIV2(mu-N)(bpb)2(CN)2], and [(n-Bu)4N][FeIV2(mu-N)(bpb)(N3)2] have been determined by single-crystal X-ray diffraction.

14.
Inorg Chem ; 39(13): 2936-47, 2000 Jun 26.
Article in English | MEDLINE | ID: mdl-11232835

ABSTRACT

A series of mononuclear, octahedral first-row transition metal ion complexes mer-[M(II)L0(2)](PF6)2 containing the tridentate neutral ligand 2,6-bis[1-(4-methoxyphenylimino)ethyl]pyridine (L0) and a Mn(II), Fe(II), Co(II), Ni(II), Cu(II), or Zn(II) ion have been synthesized and characterized by X-ray crystallography. Cyclic voltammetry and controlled potential coulometry show that each dication (except those of Cu(II) and Zn(II)) can be reversibly one-electron-oxidized, yielding the respective trications [M(III)L0(2)]3+, and in addition, they can be reversibly reduced to the corresponding monocations [ML2]+ and the neutral species [ML2]0 by two successive one-electron processes. [MnL2]PF6 and [CoL2]PF6 have been isolated and characterized by X-ray crystallography; their electronic structures are described as [Mn(III)L1(2)]PF6 and [Co(I)L0(2)]PF6 where (L1)1- represents the one-electron-reduced radical form of L0. The electronic structures of the tri-, di-, and monocations and of the neutral species have been elucidated in detail by a combination of spectroscopies: UV-vis, NMR, X-band EPR, Mossbauer, temperature-dependent magnetochemistry. It is shown that pyridine-2,6-diimine ligands are noninnocent ligands that can be coordinated to transition metal ions as neutral L0 or, alternatively, as monoanionic radical (L1)1-. All trications are of the type [M(III)L0(2)]3+, and the dications are [M(II)L0(2)]2+. The monocations are described as [Mn(III)L1(2)]+ (S = 0), [Fe(II)L0L1]+ (S = 1/2), [Co(I)L0(2)]+ (S = 1), [Ni(I)L0(2)]+ (S = 1/2), [Cu(I)L0(2)]+ (S = 0), [Zn(II)L1L0]+ (S = 1/2) where the Mn(II) and Fe(II) ions are low-spin-configurated. The neutral species are described as [Mn(II)L1(2)]0, [Fe(II)L1(2)]0, [Co(I)L0L1]0, [Ni(I)L0L1]0, and [Zn(II)L1(2)]0; their electronic ground states have not been determined.

15.
Inorg Chem ; 39(1): 105-16, 2000 Jan 10.
Article in English | MEDLINE | ID: mdl-11229016

ABSTRACT

With the aim of modeling the arrangement of redox-active and photoactive components along the electron-transfer pathway of photosystem II, tetra- to nonanuclear transition metal complexes have been synthesized, comprising one, two, or three manganese ions, oxidizable phenolates, and tris(2,2'-bipyridyl)ruthenium(II)-type units as photosensitizers. These model complexes are considered to be mononuclear ([LnMn](PF6)m), dinuclear ([L1aMnIV2(mu-O)2](PF6)6), or trinuclear ([LnMnIIMnIIMnIILn](PF6)12) with respect to the number of manganese centers present. Electronic coupling between the manganese ions is strongly antiferromagnetic in the case of the di(mu-oxo)-dimanganese compound [L1aMnIV2(mu-O)2](PF6)6, where the "ligand" [H2L1a]4+ consists of two tris(bipyridyl)ruthenium(II)-type units covalentely bound to a bismacrocyclic Me2dtne backbone to which the manganese ions are coordinated via an additional phenolate oxygen (Me2dtne = 1,2-bis(4-methyl-1,4,7-triazacyclononyl)ethane). Weak antiferromagnetic coupling is observed in compounds [LnMnIIMnIIMnIILn](PF6)12, where the three metals are in a linear arrangement (face-sharing octahedral). They are bridged by three phenolate oxygens of each of the deprotonated "ligands" [H3Ln]6+, respectively. Each ligand [H3Ln]6+ (n = 1, 2) consists of a tacn ring with three pendent arm phenols which are each bound to a tris(bipyridyl)ruthenium(II)-type unit (tacn = 1,4,7-triazacyclononane). In these compounds several electron-transfer steps were detected by electrochemical methods which are assigned to different redox processes located at individual electrochemically active components (Mn, Ru, bipyridyl, phenolate). For example, in the "mononuclear" compounds [LnMn](PF6)m (n = 1 or 2) Mn(II), Mn(III), and Mn(IV) are accessible and three Ru(II) centers are reversibly oxidized to Ru(III), and in addition, the coordinated phenolate can be oxidized to a highly reactive, coordinated phenoxyl radical. In several cases very slow heterogeneous electron-transfer rates were observed for redox processes involving the manganese centers.


Subject(s)
Manganese/chemistry , Organometallic Compounds/chemistry , Photosynthetic Reaction Center Complex Proteins/chemistry , Pyridines/chemistry , Ruthenium/chemistry , Electricity , Electron Spin Resonance Spectroscopy , Electron Transport , Ligands , Models, Biological , Organometallic Compounds/chemical synthesis , Photosystem II Protein Complex , Spectrophotometry, Ultraviolet
16.
Inorg Chem ; 39(23): 5306-17, 2000 Nov 13.
Article in English | MEDLINE | ID: mdl-11187471

ABSTRACT

Reaction of the monoanionic, pentacoordinate ligand lithium 1,4,8,11-tetraazacyclotetradecane-1-acetate, Li(cyclam-acetate), with FeCl3 yields, upon addition of KPF6, [(cyclam-acetato)FeCl]PF6 (1) as a red microcrystalline solid. Addition of excess NaN3 prior to addition of KPF6 yields the azide derivative [(cyclam-acetato)FeN3]PF6 (2a) as orange microcrystals. The X-ray crystal structure of the azide derivative has been determined as the tetraphenylborate salt (2b). Reaction of 1 with silver triflate yields [(cyclam-acetato)Fe(O3SCF3)]PF6 (3), which partially dissociates triflate in nondried solvents to yield a mixture of triflate and aqua bound species. Each of the iron(III) derivatives is low-spin (d5, S = 1/2) as determined by variable-temperature magnetic susceptibility measurements, Mössbauer and EPR spectroscopy. The low-spin iron(II) (d6, S = 0) complexes 1red and 2ared have been prepared by electrochemical and chemical methods and have been characterized by Mössbauer spectroscopy. Photolysis of 2a at 419 nm in frozen acetonitrile yields a nearly colorless species in approximately 80% conversion with an isomer shift delta = -0.04 mm/s and a quadrupole splitting delta EQ = -1.67 mm/s. A spin-Hamiltonian analysis of the magnetic Mössbauer spectra is consistent with an FeV ion (d3, S = 3/2). The proposed [(cyclam-acetato)FeV=N]+ results from the photooxidation of 2a via heterolytic N-N cleavage of coordinated azide. Photolysis of 2a in acetonitrile solution at -35 degrees C (300 nm) or 20 degrees C (Hg immersion lamp) results primarily in photoreduction via homolytic Fe-Nazide cleavage yielding FeII (d,6 S = 0) with an isomer shift delta = 0.56 mm/s and quadrupole splitting delta EQ = 0.54 mm/s. A minor product containing high-valent iron is suggested by Mössbauer spectroscopy and is proposed to originate from [((cyclam-acetato)Fe)2(mu-N)]2+ with a mixed-valent (FeIV(mu-N)FeIII))4+S = 1/2 core. Exposure of 3 to a stream of oxygen/ozone at low temperatures (-80 degrees C) in acetone/water results in a single oxidized product with an isomer shift delta = 0.01 mm/s and quadrupole splitting delta EQ = 1.37 mm/s. A spin-Hamiltonian analysis of the magnetic Mössbauer yields parameters similar to those of compound II of horseradish peroxidase which are consistent with an FeIV=O monomeric complex (S = 1).

17.
Inorg Chem ; 39(5): 930-8, 2000 Mar 06.
Article in English | MEDLINE | ID: mdl-12526371

ABSTRACT

The six-coordinate complexes [M(N)(CN)5]3- (M = Cr, Mn) have been isolated as salts of robust rhodium amine complexes. [Rh(en)3][Mn(N)(CN)5].H2O (1) and [Rh(tn)3] [Cr(N)(CN)5].2H2O (2) have been characterized by single-crystal X-ray crystallography: 1 crystallizes in the hexagonal space group P6(3) with a = b = 15.810(2) A, c = 13.844(3) A, V = 2996.8(8) A3, and Z = 6; 2 crystallizes in the orthorhombic space group Pbcn with a = 9.723(1) A, b = 14.564(2) A, c = 31.498(4) A, V = 4460.3(8) A3, and Z = 8. In 1, all the anions are oriented with their Mn identical to N directions almost coparallel to the crystallographic 3-fold axis. Polarized single-crystal UV-vis spectroscopy of 1 confirms the validity of the Jørgensen-Ballhausen-Gray d-orbital splitting scheme with the lowest energy transition being dxy-->[dyz,dzx]. Single-crystal EPR spectroscopy of [Cr(N)(CN)5]3- diluted into 1 shows the hyperfine (53Cr) and super-hyperfine (14N) tensors to be quite anisotropic with different major axes. For the hyperfine interaction we observe A Parallel > A Perpendicular, whereas, for the super-hyperfine interaction to the terminal nitrido ligand, the reverse ordering is found: A Perpendicular > A Parallel. The complexes [M(N)(CN)5]3-, trans-[M(N)(CN)4(py)]2-, and [M(N)(CN)4]2- (M = Cr, Mn) were investigated by DFT methods. Good reproduction of the molecular structures, vibrational, and UV-vis spectra was obtained. However, pronounced differences between local density and gradient corrected functionals were observed in the description of the weak bonding to the ligands trans to the nitrido ligand. For the five-coordinate [M(N)(CN)4]2- complexes the LUMO is predicted to be a strongly admixed dz2(M)-pz(M) hybrid.

18.
Angew Chem Int Ed Engl ; 38(18): 2766-2768, 1999 Sep.
Article in English | MEDLINE | ID: mdl-10508376

ABSTRACT

Localized valencies are displayed by the Mn(V)-Mn(II) complex ion 1. This is the key finding from X-ray structure analysis, as well as vibrational and EPR spectroscopic invesigations on 1 obtained by the reaction of manganese(II) and [Mn(v)(N)(CN)(5)](3-) salts in aqueous 1 M NaCN solution. Remarkably, the asymmetry is induced by the nitrogen atom bridge.

19.
Angew Chem Int Ed Engl ; 38(8): 1095-8, 1999.
Article in English | MEDLINE | ID: mdl-25138506

ABSTRACT

Primary alcohols such as ethanol or benzyl alcohol are selectively and catalytically oxidized by the mononuclear copper(II) radical complex 1-a functional model of the metalloenzyme galactose oxidase-with oxygen from air at 20°C to give the corresponding aldehydes and H2 O2 in about 60 % yield.

20.
Chemistry ; 3(2): 308-19, 1997 Feb.
Article in English | MEDLINE | ID: mdl-24022963

ABSTRACT

The hexadentate macrocyclic ligands 1,4,7-tris(3,5-dimethyl-2-hydroxybenzyl)-1,4,7-triazacyclononane (L CH 3H3 ), 1,4,7-tris(3,5-di-tert-butyl-2-hydroxybenzyl)-1,4,7-triazacyclononane (L(Bu) H3 ) and 1,4,7-tris(3-tert-butyl-5-methoxy-2-hydroxybenzyl)-1,4,7-triazacyclononane (L OCH 3-H3 ) form very stable octahedral neutral complexes LM(III) with trivalent (or tetravalent) metal ions (Ga(III) , Sc(III) , Fe(III) , Mn(III) , Mn(IV) ). The following complexes have been synthesized: [L(Bu) M], where M = Ga (1), Sc (2), Fe (3); [L(Bu) Mn(IV) ]PF6 (4'); [L OCH 3M], where M = Ga (1 a), Sc (2 a), Fe (3 a); [L OCH 3Mn(IV) ]PF6 (4 a'); [L CH 3M], where M = Sc (2 b), Fe (3 b), Mn(III) (4 b); [L CH 3Mn(IV) ]2 (ClO4 )3 (H3 O)(H2 O)3 (4 b'). An electrochemical study has shown that complexes 1, 2, 3, 1 a, 2 a and 3 a each display three reversible, ligand-centred, one-electron oxidation steps. The salts [L OCH 3Fe(III) ]ClO4 and [L OCH 3Ga(III) ]ClO4 , have been isolated as stable crystalline materials. Electronic and EPR spectra prove that these oxidations produce species containing one, two or three coordinated phenoxyl radicals. The Mössbauer spectra of 3 a and [3 a](+) show conclusively that both compounds contain high-spin iron(III) central ions. Temperature-dependent magnetic susceptibility measurements reveal that 3 a has an S = 5/2 and [3a](+) an S = 2 ground state. The latter is attained through intramolecular antiferromagnetic exchange coupling between a high-spin iron(III) (S1 = 5/2) and a phenoxyl radical (S2 = 1/2) (H = - 2JS1 S2 ; J = - 80 cm(-1) ). The manganese complexes undergo metal- and ligand-centred redox processes, which were elucidated by spectroelectrochemistry; a phenoxyl radical Mn(IV) complex [Mn(IV) L OCH 3](2+) is accessible.

SELECTION OF CITATIONS
SEARCH DETAIL
...