Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Oncolytics ; 26: 120-134, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-35795096

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has demonstrated unprecedented success with high remission rates for heavily pretreated patients with hematological malignancies. The hinge connecting the extracellular antigen recognition unit to the transmembrane domain provides the length and flexibility of the CAR constructs and ensures that the CAR can reach the target antigen and mediate recognition and killing of target cells. The hinge can also include specific amino acid sequences to improve CAR expression, influence T cell proliferation, and facilitate CAR T cell detection, enrichment, and even elimination. Here, we report the generation of two novel hinge domains derived from the low-affinity p75 chain of the human nerve growth factor receptor (NGFR), termed N3 and N4, which, when incorporated into the CAR backbone, allow detection as well as high-grade enrichment of CAR T cells with GMP-compatible immunomagnetic reagents. After optimizing the MACS protocol for excellent CAR T cell purity and yield, we demonstrated that N3- and N4-hinged CAR T cells are as efficacious as their CD8-hinged counterparts in vitro against hematological blasts and also in vivo in the control of acute monocytic leukemia in an immunodeficient mouse xenograft model. Thus, both hinges could potentially be an integral part of future CAR designs and universally applicable in clinical applications.

2.
Gene Ther ; 23(7): 615-26, 2016 07.
Article in English | MEDLINE | ID: mdl-27092941

ABSTRACT

Engineering autologous or allogeneic T cells to express a suicide gene can control potential toxicity in adoptive T-cell therapies. We recently reported the development of a novel human suicide gene system that is based on an orphan human cytochrome P450 enzyme, CYP4B1, and the naturally occurring alkylator prodrug 4-ipomeanol. The goal of this study was to systematically develop a clinically applicable self-inactivating lentiviral vector for efficient co-expression of CYP4B1 as an ER-located protein with two distinct types of cell surface proteins, either MACS selection genes for donor lymphocyte infusions after allogeneic stem cell transplantation or chimeric antigen receptors for retargeting primary T cells. The U3 region of the myeloproliferative sarcoma virus in combination with the T2A site was found to drive high-level expression of our CYP4B1 mutant with truncated CD34 or CD271 as MACS suitable selection markers. This lentiviral vector backbone was also well suited for co-expression of CYP4B1 with a codon-optimized CD19 chimeric antigen receptor (CAR) construct. Finally, 4-ipomeanol efficiently induced apoptosis in primary T cells that co-express mutant CYP4B1 and the divergently located MACS selection and CAR genes. In conclusion, we here developed a clinically suited lentiviral vector that supports high-level co-expression of cell surface proteins with a potent novel human suicide gene.


Subject(s)
Aryl Hydrocarbon Hydroxylases/genetics , Genes, Transgenic, Suicide , Genetic Therapy/methods , Immunotherapy, Adoptive/methods , Antigens, CD34/genetics , Antigens, CD34/metabolism , Apoptosis , Aryl Hydrocarbon Hydroxylases/metabolism , Cells, Cultured , Genetic Vectors/genetics , HEK293 Cells , Humans , Jurkat Cells , Lentivirus/genetics , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Terpenes/therapeutic use
3.
Cell Death Differ ; 20(10): 1425-34, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23912710

ABSTRACT

Exposure of keratinocytes (KC) to ultraviolet (UV) radiation results in the initiation of apoptosis, a protective mechanism that eliminates cells harboring irreparable DNA damage. Hence, a manipulation of UV-induced apoptosis may significantly influence photocarcinogenesis. We have discovered that the aryl hydrocarbon receptor (AHR), a key regulator of drug metabolism and an UVB-sensitive transcription factor, serves an anti-apoptotic function in UVB-irradiated human KC. Chemical and shRNA-mediated inhibition of AHR signaling sensitized KC to UVB-induced apoptosis by decreasing the expression of E2F1 and its target gene checkpoint kinase 1 (CHK1). The decreased expression of these cell-cycle regulators was due to an enhanced expression of p27(KIP1) and an associated decrease in phosphorylation of both cyclin-dependent kinase 2 and its substrate molecule retinoblastoma protein. The subsequent inhibition of E2F1 autoregulation and downstream CHK1 expression resulted in an enhanced susceptibility of damaged cells to undergo apoptosis. Accordingly, ectopic overexpression of either E2F1 or CHK1 in AHR-knockdown KC attenuated the observed sensitization to UVB-induced apoptosis. Using an AHR-knockout SKH-1 hairless mouse model, we next demonstrated the physiological relevance of the anti-apoptotic function of AHR. In contrast to their AHR-proficient littermates, the constitutive expression of E2F1 and CHK1 was significantly reduced in the skin of AHR-knockout mice. Accordingly, a single exposure of the animals to UVB resulted in an enhanced cleavage of caspase-3 in the skin of AHR-knockout mice. These results identify for the first time the AHR-E2F1-CHK1 axis as a novel anti-apoptotic pathway in KC, which may represent a suitable target for chemoprevention of non-melanoma skin cancer.


Subject(s)
Apoptosis/physiology , Basic Helix-Loop-Helix Transcription Factors/metabolism , E2F1 Transcription Factor/metabolism , Keratinocytes/cytology , Keratinocytes/metabolism , Protein Kinases/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Checkpoint Kinase 1 , E2F1 Transcription Factor/genetics , Humans , Keratinocytes/enzymology , Male , Mice , Mice, Knockout , Protein Kinases/genetics , Receptors, Aryl Hydrocarbon/genetics , Signal Transduction , Transfection
4.
Oncogene ; 29(46): 6184-92, 2010 Nov 18.
Article in English | MEDLINE | ID: mdl-20729911

ABSTRACT

Microtubule-interfering cancer drugs such as paclitaxel (PTX) often cause chemoresistance and severe side effects, including neurotoxicity. To explore potentially novel antineoplastic molecular targets, we investigated the cellular response of breast carcinoma cells to short hairpin(sh)RNA-mediated depletion of the centrosomal protein transforming acidic coiled coil (TACC) 3, an Aurora A kinase target expressed during mitosis. Unlike PTX, knockdown of TACC3 did not trigger a cell death response, but instead resulted in a progressive loss of the pro-apoptotic Bcl-2 protein Bim that links microtubule integrity to spindle poison-induced cell death. Interestingly, TACC3-depleted cells arrested in G1 through a cellular senescence program characterized by the upregulation of nuclear p21(WAF), downregulation of the retinoblastoma protein and extracellular signal-regulated kinase 1/2, formation of HP1γ (phospho-Ser83)-positive senescence-associated heterochromatic foci and increased senescence-associated ß-galactosidase activity. Remarkably, the onset of senescence following TACC3 knockdown was strongly accelerated in the presence of non-toxic PTX concentrations. Thus, we conclude that mitotic spindle stress is a major trigger of premature senescence and propose that the combined targeting of the centrosomal Aurora A-TACC3 axis together with drugs interfering with microtubule dynamics may efficiently improve the chemosensitivity of cancer cells.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Cellular Senescence/drug effects , Microtubule-Associated Proteins/physiology , Paclitaxel/pharmacology , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/physiology , Doxorubicin/pharmacology , Extracellular Signal-Regulated MAP Kinases/physiology , Humans , Microtubules/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...