Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Bioeng Biotechnol ; 9: 729057, 2021.
Article in English | MEDLINE | ID: mdl-34568302

ABSTRACT

Pancreatic beta cells have inadequate levels of antioxidant enzymes, and the damage induced by oxidative stress poses a challenge for their use in a therapy for patients with type 1 diabetes. It is known that the interaction of the pancreatic endocrine cells with support cells can improve their survival and lead to less vulnerability to oxidative stress. Here we investigated alpha (alpha TC-1), beta (INS1E) and endothelial (HUVEC) cells assembled into aggregates known as pseudoislets as a model of the pancreatic islets of Langerhans. We hypothesised that the coculture of alpha, beta and endothelial cells would be protective against oxidative stress. First, we showed that adding endothelial cells decreased the percentage of oxidative stress-positive cells. We then asked if the number of endothelial cells or the size (number of cells) of the pseudoislet could increase the protection against oxidative stress. However, no additional benefit was observed by those changes. On the other hand, we identified a potential supportive effect of the alpha cells in reducing oxidative stress in beta and endothelial cells. We were able to link this to the incretin glucagon-like peptide-1 (GLP-1) by showing that the absence of alpha cells in the pseudoislet caused increased oxidative stress, but the addition of GLP-1 could restore this. Together, these results provide important insights into the roles of alpha and endothelial cells in protecting against oxidative stress.

2.
Tissue Eng Part A ; 27(15-16): 1055-1063, 2021 08.
Article in English | MEDLINE | ID: mdl-33076775

ABSTRACT

Vascularization is undoubtedly one of the greatest challenges in tissue engineering. Its importance is particularly evident when considering the transplantation of (bioengineered) pancreatic islets of Langerhans, which are highly sensitive to the delivery of oxygen and nutrients for their survival and function. Here we studied pseudoislets of Langerhans, which are three-dimensional spheroids composed of ß (INS1E), α (alpha TC-1), and endothelial (HUVEC) cells, and were interested in how the location and prevalence of the different cell types affected the presence of endothelial cells in the pseudoislet. We hypothesized that alpha (α) cells play an essential role in islet self-assembly and the incorporation of endothelial cells into the pseudoislet, and are thus important to consider in tissue engineering or regenerative medicine strategies, which typically focuses on the insulin-producing beta (ß) cells alone. We first determined the effect of changing the relative ratios of the cells and found the cell distribution converged on a steady state of ∼21% α cells, 74% ß cells, and 5% endothelial cells after 10 days of culture regardless of their respective ratios at seeding. We also found that the incorporation of endothelial cells was related to the pseudoislet size, with more endothelial cells found in the core of larger pseudoislets following a concomitant increase of α cells and a decrease in ß cells. Finally, we observed that both endothelial and ß cells were found adjacent to α cells significantly more frequently than to each other. In conclusion, this study demonstrates that the self-assembly of a pseudoislet is an intrinsically cell-regulated process. The endothelial cells had preferential proximity to the α cells, and this persisted even when challenged with changing the cell ratios and numbers. This study gives insight into the rules governing the self-organization of pseudoislets and suggests an important role for α cells to promote the incorporation of endothelial cells.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Human Umbilical Vein Endothelial Cells , Humans , Insulin , Tissue Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...