Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Animal ; 17(3): 100719, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36801550

ABSTRACT

Extensive pastoral livestock systems in Central Europe provide multiple ecosystem services and support biodiversity in agricultural landscapes but their viability is challenged by livestock depredation (LD) associated with the recovery of wolf populations. Variation in the spatial distribution of LD depends on a suite of factors, most of which are unavailable at the appropriate scales. To assess if LD patterns can be predicted sufficiently with land use data alone at the scale of one federal state in Germany, we employed a machine-learning-supported resource selection approach. The model used LD monitoring data, and publicly available land use data to describe the landscape configuration at LD and control sites (resolution 4 km * 4 km). We used SHapley Additive exPlanations to assess the importance and effects of landscape configuration and cross-validation to evaluate the model performance. Our model predicted the spatial distribution of LD events with a mean accuracy of 74%. The most influential land use features included grassland, farmland and forest. The risk of livestock depredation was high if these three landscape features co-occurred with a specific proportion. A high share of grassland, combined with a moderate proportion of forest and farmland, increased LD risk. We then used the model to predict the LD risk in five regions; the resulting risk maps showed high congruence with observed LD events. While of correlative nature and lacking specific information on wolf and livestock distribution and husbandry practices, our pragmatic modelling approach can guide spatial prioritisation of damage prevention or mitigation practices to improve livestock-wolf coexistence in agricultural landscapes.


Subject(s)
Ecosystem , Wolves , Animals , Livestock , Conservation of Natural Resources/methods , Biodiversity , Agriculture
2.
R Soc Open Sci ; 8(3): 201275, 2021 Mar 31.
Article in English | MEDLINE | ID: mdl-33959314

ABSTRACT

Soil samples from several European countries were scanned using medical computer tomography (CT) device and are now available as CT images. The analysis of these samples was carried out using deep learning methods. For this purpose, a VGG16 network was trained with the CT images (X). For the annotation (y) a new method for automated annotation, 'surrogate' learning, was introduced. The generated neural networks (NNs) were subjected to a detailed analysis. Among other things, transfer learning was used to check whether the NN can also be trained to other y-values. Visually, the NN was verified using a gradient-based class activation mapping (grad-CAM) algorithm. These analyses showed that the NN was able to generalize, i.e. to capture the spatial structure of the soil sample. Possible applications of the models are discussed.

3.
PLoS Negl Trop Dis ; 15(4): e0009288, 2021 04.
Article in English | MEDLINE | ID: mdl-33872307

ABSTRACT

BACKGROUND: Visceral leishmaniasis (VL) is re-emerging in Armenia since 1999 with 167 cases recorded until 2019. The objectives of this study were (i) to determine for the first time the genetic diversity and population structure of the causative agent of VL in Armenia; (ii) to compare these genotypes with those from most endemic regions worldwide; (iii) to monitor the diversity of vectors in Armenia; (iv) to predict the distribution of the vectors and VL in time and space by ecological niche modeling. METHODOLOGY/PRINCIPAL FINDINGS: Human samples from different parts of Armenia previously identified by ITS-1-RFLP as L. infantum were studied by Multilocus Microsatellite Typing (MLMT). These data were combined with previously typed L. infantum strains from the main global endemic regions for population structure analysis. Within the 23 Armenian L. infantum strains 22 different genotypes were identified. The combined analysis revealed that all strains belong to the worldwide predominating MON1-population, however most closely related to a subpopulation from Southeastern Europe, Maghreb, Middle East and Central Asia. The three observed Armenian clusters grouped within this subpopulation with strains from Greece/Turkey, and from Central Asia, respectively. Ecological niche modeling based on VL cases and collected proven vectors (P. balcanicus, P. kandelakii) identified Yerevan and districts Lori, Tavush, Syunik, Armavir, Ararat bordering Georgia, Turkey, Iran and Azerbaijan as most suitable for the vectors and with the highest risk for VL transmission. Due to climate change the suitable habitat for VL transmission will expand in future all over Armenia. CONCLUSIONS: Genetic diversity and population structure of the causative agent of VL in Armenia were addressed for the first time. Further genotyping studies should be performed with samples from infected humans, animals and sand flies from all active foci including the neighboring countries to understand transmission cycles, re-emergence, spread, and epidemiology of VL in Armenia and the entire Transcaucasus enabling epidemiological monitoring.


Subject(s)
Communicable Diseases, Emerging/diagnosis , Leishmania infantum/genetics , Leishmaniasis, Visceral/diagnosis , Leishmaniasis, Visceral/epidemiology , Microsatellite Repeats , Armenia/epidemiology , Child, Preschool , Communicable Diseases, Emerging/epidemiology , Communicable Diseases, Emerging/parasitology , Ecosystem , Female , Genotype , Humans , Infant , Leishmaniasis, Visceral/parasitology , Male , Molecular Epidemiology , Molecular Typing , Pilot Projects , Polymorphism, Restriction Fragment Length , Risk Assessment
4.
Parasitol Res ; 119(1): 31-42, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31773308

ABSTRACT

Invasive mosquito species and the pathogens they transmit represent a serious health risk to both humans and animals. Thus, predictions on their potential geographic distribution are urgently needed. In the case of a recently invaded region, only a small number of occurrence data is typically available for analysis, and absence data are not reliable. To overcome this problem, we have tested whether it is possible to determine the climatic ecological niche of an invasive mosquito species by using both the occurrence data of other, native species and machine learning. The approach is based on a support vector machine and in this scenario applied to the Asian bush mosquito (Aedes japonicus japonicus) in Germany. Presence data for this species (recorded in the Germany since 2008) as well as for three native mosquito species were used to model the potential distribution of the invasive species. We trained the model with data collected from 2011 to 2014 and compared our predicted occurrence probabilities for 2015 with observations found in the field throughout 2015 to evaluate our approach. The prediction map showed a high degree of concordance with the field data. We applied the model to medium climate conditions at an early stage of the invasion (2011-2015), and developed an explanation for declining population densities in an area in northern Germany. In addition to the already known distribution areas, our model also indicates a possible spread to Saarland, southwestern Rhineland-Palatinate and in 2015 to southern Bavaria, where the species is now being increasingly detected. However, there is also evidence that the possible distribution area under the mean climate conditions was underestimated.


Subject(s)
Aedes/physiology , Ecosystem , Introduced Species , Mosquito Vectors/physiology , Animals , Germany , Humans , Support Vector Machine
5.
Parasit Vectors ; 12(1): 106, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30871595

ABSTRACT

BACKGROUND: The Asian bush mosquito Aedes japonicus japonicus is an invasive species native to East Asia and has become established in North America and Europe. On both continents, the species has spread over wide areas. Since it is a potential vector of human and livestock pathogens, distribution and dissemination maps are urgently needed to implement targeted surveillance and control in case of disease outbreaks. Previous distribution models for Europe and Germany in particular focused on climate data. Until now, effects of other environmental variables such as land use and wind remained unconsidered. RESULTS: In order to better explain the distribution pattern of Ae. j. japonicus in Germany at a regional level, we have developed a nested approach that allows for the combination of data derived from (i) a climate model based on a machine-learning approach; (ii) a landscape model developed by means of ecological expert knowledge; and (iii) wind speed data. The approach is based on the fuzzy modelling technique that enables to precisely define the interactions between the three factors and additionally considers uncertainties with regard to the acceptance of certain environmental conditions. The model combines different spatial resolutions of data for Germany and achieves a much higher degree of accuracy than previous published distribution models. Our results reveal that a well-suited landscape structure can even facilitate the occurrence of Ae. j. japonicus in a climatically unsuitable region. Vice versa, unsuitable land use types such as agricultural landscapes and coniferous forests reduce the occurrence probability in climatically suitable regions. CONCLUSIONS: The approach has significantly improved existing distribution models of Ae. j. japonicus for the area of Germany. We generated distribution maps with a resolution of 100 × 100 m that can serve as a basis for the design of control measures. All model input data and scripts are open source and freely available, so that the model can easily be applied to other countries or, more generally, to other species.


Subject(s)
Aedes/physiology , Mosquito Vectors/physiology , Animal Distribution , Animals , Climate , Climate Change , Germany , Introduced Species , Logistic Models , Machine Learning , Wind
6.
J Environ Manage ; 127 Suppl: S168-83, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23582740

ABSTRACT

Decision support to develop viable climate change adaptation strategies for agriculture and regional land use management encompasses a wide range of options and issues. Up to now, only a few suitable tools and methods have existed for farmers and regional stakeholders that support the process of decision-making in this field. The interactive model-based spatial information and decision support system LandCaRe DSS attempts to close the existing methodical gap. This system supports interactive spatial scenario simulations, multi-ensemble and multi-model simulations at the regional scale, as well as the complex impact assessment of potential land use adaptation strategies at the local scale. The system is connected to a local geo-database and via the internet to a climate data server. LandCaRe DSS uses a multitude of scale-specific ecological impact models, which are linked in various ways. At the local scale (farm scale), biophysical models are directly coupled with a farm economy calculator. New or alternative simulation models can easily be added, thanks to the innovative architecture and design of the DSS. Scenario simulations can be conducted with a reasonable amount of effort. The interactive LandCaRe DSS prototype also offers a variety of data analysis and visualisation tools, a help system for users and a farmer information system for climate adaptation in agriculture. This paper presents the theoretical background, the conceptual framework, and the structure and methodology behind LandCaRe DSS. Scenario studies at the regional and local scale for the two Eastern German regions of Uckermark (dry lowlands, 2600 km(2)) and Weißeritz (humid mountain area, 400 km(2)) were conducted in close cooperation with stakeholders to test the functionality of the DSS prototype. The system is gradually being transformed into a web version (http://www.landcare-dss.de) to ensure the broadest possible distribution of LandCaRe DSS to the public. The system will be continuously developed, updated and used in different research projects and as a learning and knowledge-sharing tool for students. The main objective of LandCaRe DSS is to provide information on the complex long-term impacts of climate change and on potential management options for adaptation by answering "what-if" type questions.


Subject(s)
Agriculture , Conservation of Natural Resources/methods , Models, Theoretical , Climate Change , Decision Support Techniques , Geographic Information Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...