Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(23)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34885472

ABSTRACT

This article concerns the tribological properties of three selected polymer materials: polyamide PA6, polyethylene PE-HD and polyetheretherketone composite PEEK/BG during sliding against aluminium alloy EN AW-2017A in the presence of hydraulic oil HLP 68. The tests were carried out under contact pressure p of 3.5-11 MPa at ambient temperature T ranging from -20 °C to +20 °C. The dependence of kinetic friction coefficient µk on the two parameters was determined through tribological tests carried out using a pin-on-disc tribometer. A five-level central composite rotatable design (CCRD) was adopted for the experiment. All the test results were statistically analysed. The microhardness of the surface of the polymeric material was measured before and after the friction process. The surface was also examined under SEM. Temperature and contact pressure have been found to have a significant effect on the tribological properties of the tested sliding pairs. Relative to the applied friction conditions, the surfaces after friction showed rather heavy signs of wear.

2.
Polymers (Basel) ; 12(6)2020 May 29.
Article in English | MEDLINE | ID: mdl-32486090

ABSTRACT

With the development of 3D printing technology, there is a need to produce printable materials with improved properties, e.g., sliding properties. In this paper, the authors present the possibilities of producing composites based on biodegradable PLA with the addition of graphite. The team created composites with the following graphite weight contents: 1%, 2.5%, 5%, 7.5%, and 10%. Neat material was also subjected to testing. Tribological, mechanical, and chemical properties of the mentioned materials were examined. Measurements were also made after keeping the samples in ageing and climatic ovens. Furthermore, SEM observations of samples before and after friction tests were carried out. It was demonstrated that increasing graphite content caused a significant decrease in wear (PLA + 10% graphite had a wear rate three times lower than for a neat material). The addition of graphite did not adversely affect most of the other properties, but it ought to be noted that mechanical properties changed significantly. After conditioning in a climatic oven PLA + 10% graphite has (in comparison with neat material) 11% lower fracture stress, 47% lower impact strength, and 21% higher Young's modulus. It can be certainly stated that the addition of graphite to PLA is a step towards obtaining a material that is low-cost and suitable for printing sliding spare parts.

3.
Polymers (Basel) ; 11(9)2019 Aug 31.
Article in English | MEDLINE | ID: mdl-31480441

ABSTRACT

Polymer materials are increasingly being used for sliding machine elements due to their numerous advantages. They are used even where they are deformed and in such a state that they interact frictionally, e.g., in machine hydraulics or lip seals. Few publications deal with the influence of deformation, which is the effect of, e.g., assembly on tribological properties of polymeric material. This deformation can reach up to ε ≈ 20% and is achieved without increasing the temperature of the polymer material. The paper presents the results of investigations in which high-density polyethylene (PE-HD) was maintained in deformation by means of a special grip (holder). The wear of the sample was significantly higher than that of the undeformed sample. This effect persisted even after partial relaxation of the stress in the sample after 24 h. Additional investigations were carried out to explain the obtained results. There were the microscopic observations of the surface after friction, measurements of microhardness, and surface free energy. Changes in the value of surface free energy and a significant decrease in microhardness with deformation under tension were observed. Deformed materials have a different surface appearance after friction and a different size and form of wear products. It was indicated that it is probable that the cohesion of the material will decrease and that the character of the wear process will change as a result of tension. Deformation under tension without heating of polymeric material (PE-HD), e.g., as a result of assembly, has been qualified as a threat to be taken into account when designing and analysing polymeric sliding elements.

4.
Acta Bioeng Biomech ; 19(4): 161-169, 2017.
Article in English | MEDLINE | ID: mdl-29507428

ABSTRACT

A biocompatible hydroxyapatite (HA) coating with a thickness of about 18-20 microns was successfully deposited by radiofrequency (RF) magnetron sputtering on titanium substrates VT1-0. The data obtained for the optimal composition and structure of hydroxyapatite can be used to create coating which will interact with a titanium substrate. Using the methods of optical and SEM, AFM, electron microprobe, FTIR and X-ray analysis, surface morphology, phase and elemental composition, structure of hydroxyapatite (HA) coatings were studied. Structural and phase transformations after heat treatment using X-ray diffraction and microscopic methods of analysis were studied. It was found that after annealing coating phase analysis showed the presence of not only hydroxyapatite (Ca5(PO4)3OH), but also compounds of tricalcium phosphate (Ca3(PO4)2) and titanium oxide. Adhesivetribological durability, friction and deformation characteristics of hydroxyapatite coating on titanium substrate were determined. The obtained coatings had high hardness, wear resistance and adhesion to the substrate and low modulus of elasticity and coefficient of friction.


Subject(s)
Durapatite/chemistry , Hot Temperature , Materials Testing/methods , Titanium/chemistry , Friction , Hardness , Microscopy, Electron, Transmission , Surface Properties , X-Ray Diffraction
5.
Acta Bioeng Biomech ; 15(4): 43-8, 2013.
Article in English | MEDLINE | ID: mdl-24479667

ABSTRACT

Cylindrical telescopic crowns belong to bolt dentures, because their adhesion strength is based on the friction force. The magnitude of static and slide friction forces depends on the strain within the contact area and properties of materials employed. Friction force value between telescope elements declines in the first phase of wearing period and, subsequently, maintains particular constant value of 8 to 10 N. In the telescopic technique, homo and heterogenic joints are used. The following prosthodontic materials have been examined: goldbase alloys (Degudent Kiss, Degulor M), cobalt-base alloy (Brealloy 270), ceramics (Zircon Oxide, Zirconia) during tribological investigations on FGP composite resin. The cooperating surfaces were moistened with synthetic saliva. The research confirmed the dependence of the static friction coefficient on the contact pressure for the analyzed pairs of materials used in prosthodontics. The biggest effect of the contact pressure on the coefficient of friction value occurs when the ceramic rubs on FGP composite resin. The most stable friction coefficient in the context of contact pressure changes as well as life has been found in the case of the cobalt alloy Brealloy 270. An interesting material is a gold alloy Degulor M, for which the coefficient of friction varies only slightly with pressure in the range of 0.6 to 0.9 MPa.


Subject(s)
Crowns , Denture Retention/methods , Denture, Partial, Removable , Friction , Humans , Pressure , Resins, Synthetic
SELECTION OF CITATIONS
SEARCH DETAIL
...