Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 154(7): 2097-2107, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38703889

ABSTRACT

BACKGROUND: Bovine milk processing influences the structure of the curd formed during gastric digestion, which may alter gastric protein hydrolysis and impact amino acid (AA) release into the small intestine. OBJECTIVES: This study aimed to determine the influence of heat treatment and homogenization on the gastric protein digestion and AA emptying of bovine milk. METHODS: Nine-wk-old pigs (n = 144) consumed either raw, pasteurized nonhomogenized (PNH), pasteurized homogenized (PH), or ultra-high-temperature homogenized (UHT) bovine milk for 10 d. On day 11, fasted pigs received the milk treatment (500 mL) before gastric contents were collected at 0, 20, 60, 120, 180, and 300 min postprandially. The apparent degree of gastric protein hydrolysis (based on the release of free amino groups), apparent gastric disappearance of individual proteins [based on sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel band intensity], and the gastric emptying of digested protein and AA were determined. RESULTS: During the first 60 min, the rate of apparent gastric protein hydrolysis was fastest in pigs fed UHT milk (0.29%/min compared with on average 0.07%/min in pigs fed raw, PNH, and PH milk). Differences in the apparent degree of gastric protein hydrolysis and emptying were reflected in the rate of digested protein entering the small intestine. The AA gastric emptying half-time was generally shorter in pigs fed PH and UHT milk than in pigs fed raw and PNH milk. For example, the gastric release of total essential AA was >2-fold faster (P < 0.01) in pigs fed PH or UHT milk than that in pigs fed raw or PNH milk (i.e., homogenized compared with nonhomogenized milk). CONCLUSIONS: Heat treatment and homogenization increased the apparent gastric degree of protein hydrolysis and the release of digested protein into the small intestine. However, the rate of AA entering the small intestine was mainly increased by homogenization.


Subject(s)
Digestion , Gastric Emptying , Hot Temperature , Milk Proteins , Animals , Digestion/physiology , Swine , Milk Proteins/metabolism , Milk Proteins/chemistry , Humans , Cattle , Food Handling/methods , Amino Acids/metabolism , Milk/chemistry , Hydrolysis , Pasteurization
2.
J Proteomics ; 273: 104806, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36587727

ABSTRACT

Understanding the functional attributes of meat proteins is crucial for determining their nutritional benefits. Depending on the form in which meat proteins are available, the digestive process can release peptides which are valuable for nutrition and may also possess bioactive properties, affecting physiology. Liquid chromatography - mass spectrometry (LC-MS) was used to quantitatively compare the molecular peptide features (representing non-redundant peptides), during the different stages of a simulated gastrointestinal digestion process of a minimally processed powdered meat and its enzymatically produced hydrolysate. Results from a principal component analysis (PCA) indicated that the hydrolysate did not undergo extensive additional digestion whereas the powdered meat was digested both at the gastric and in the intestinal phases. Bioactive peptide sequence prediction identified the meat hydrolysate but not the meat powder as the only source of exact and partial bioactive matches in the angiotensin-I converting enzyme and dipeptidyl peptidase IV inhibition categories. Also, a higher source of cryptides (encrypted bioactive peptides), indicated that meat hydrolysates are potentially a better substrate for the release of these enzyme inhibitory peptides. These observations thus suggest that pre-digestion of a complex food matrix such as meat, may enhance its bioavailability following oral consumption early in the digestion process. SIGNIFICANCE: This work highlights enzymatic hydrolysis of meat proteins prior to ingestion allows for potentially higher bioavailability of bioactive peptides that inhibit angiotensin-I converting enzyme and dipeptidyl peptidase IV, thus possibly aiding high blood pressure and type 2 diabetes management.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl Peptidase 4 , Humans , Angiotensins , Digestion , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl Peptidase 4/metabolism , Meat/analysis , Meat Proteins , Peptides/metabolism
3.
PeerJ ; 6: e5359, 2018.
Article in English | MEDLINE | ID: mdl-30065896

ABSTRACT

Skimmed milk powder (SMP) and whey protein concentrate (WPC) were manufactured from fresh milk collected from cows producing high or low Immunoglobulin (Ig) A levels in their milk. In addition commercial products were purchased for use as diluent or control treatments. A murine enteric disease model (Citrobacter rodentium) was used to assess whether delivery of selected bioactive molecules (IgA, IgG, Lactoferrin (Lf)) or formulation delivery matrix (SMP, WPC) affected faecal shedding of bacteria in C. rodentium infected mice. In trial one, faecal pellets collected from mice fed SMP containing IgA (0.007-0.35 mg/mL), IgG (0.28-0.58 mg/mL) and Lf (0.03-0.1 mg/mL) contained fewer C. rodentium (cfu) compared to control mice fed water (day 8, p < 0.04, analysis of variance (ANOVA) followed by Fisher's unprotected least significant difference (ULSD)). In trial two, WPC containing IgA (0.35-1.66 mg/mL), IgG (0.58-2.36 mg/mL) and Lf (0.02-0.45 mg/mL) did not affect C. rodentium shedding, but SMP again reduced faecal C. rodentium levels (day 12, p < 0.04, ANOVA followed by Fisher's ULSD). No C. rodentium was detected in sham phosphate-buffered saline inoculated mice. Mice fed a commercial WPC shed significantly greater numbers of C. rodentium over 4 consecutive days (Fishers ULSD test), compared to control mice fed water. These data indicate that SMP, but not WPC, modulates faecal shedding in C. rodentium-infected mice and may impact progression of C. rodentium infection independently of selected bioactive concentration. This suggests that food matrix can impact biological effects of foods.

4.
Biomarkers ; 14(1): 26-37, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19283521

ABSTRACT

The serum amyloid A protein is one of the major reactants in the acute-phase response. Using representational difference analysis comparing RNA from normal and involuting quarters of a dairy cow mammary gland, we found an mRNA encoding the SAA3 protein (M-SAA3). The M-SAA3 mRNA was localized to restricted populations of bovine mammary epithelial cells (MECs). It was expressed at a moderate level in late pregnancy, at a low level through lactation, was induced early in milk stasis, and expressed at high levels in most MECs during mid to late involution and inflammation/mastitis. The mature M-SAA3 peptide was expressed in Escherichia coli, antibodies made, and shown to have antibacterial activity against E. coli, Streptococcus uberis and Pseudomonas aeruginosa. These results suggest that the mammary SAA3 may have a role in protection of the mammary gland during remodelling and infection and possibly in the neonate gastrointestinal tract.


Subject(s)
Mammary Glands, Animal/metabolism , Serum Amyloid A Protein/metabolism , Animals , Base Sequence , Blotting, Northern , Blotting, Western , Cattle , DNA Primers , Enzyme-Linked Immunosorbent Assay , Polymerase Chain Reaction , RNA, Messenger/genetics , Serum Amyloid A Protein/genetics , Serum Amyloid A Protein/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...