Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 289(15): 10797-10811, 2014 Apr 11.
Article in English | MEDLINE | ID: mdl-24567321

ABSTRACT

The vertebrate sodium (Nav) channel is composed of an ion-conducting α subunit and associated ß subunits. Here, we report the crystal structure of the human ß3 subunit immunoglobulin (Ig) domain, a functionally important component of Nav channels in neurons and cardiomyocytes. Surprisingly, we found that the ß3 subunit Ig domain assembles as a trimer in the crystal asymmetric unit. Analytical ultracentrifugation confirmed the presence of Ig domain monomers, dimers, and trimers in free solution, and atomic force microscopy imaging also detected full-length ß3 subunit monomers, dimers, and trimers. Mutation of a cysteine residue critical for maintaining the trimer interface destabilized both dimers and trimers. Using fluorescence photoactivated localization microscopy, we detected full-length ß3 subunit trimers on the plasma membrane of transfected HEK293 cells. We further show that ß3 subunits can bind to more than one site on the Nav 1.5 α subunit and induce the formation of α subunit oligomers, including trimers. Our results suggest a new and unexpected role for the ß3 subunits in Nav channel cross-linking and provide new structural insights into some pathological Nav channel mutations.


Subject(s)
Voltage-Gated Sodium Channel beta-3 Subunit/chemistry , Amino Acid Sequence , Binding Sites , Cloning, Molecular , Crystallization , Crystallography, X-Ray , Dimerization , HEK293 Cells , Humans , Immunoglobulins/chemistry , Microscopy, Atomic Force , Molecular Sequence Data , NAV1.5 Voltage-Gated Sodium Channel/chemistry , Protein Conformation , Ultracentrifugation
2.
Phys Rev Lett ; 95(10): 107402, 2005 Sep 02.
Article in English | MEDLINE | ID: mdl-16196964

ABSTRACT

Exchange splitting and dynamics of image-potential states in front of a 3 monolayer iron film on Cu(100) have been studied with time-, energy-, and spin-resolved bichromatic two-photon photoemission. For the first image-potential state n=1 we observe an exchange splitting of 56 +/- 10 meV and spin-dependent lifetimes of 16 +/- 2 fs for majority-spin and of 11 +/- 2 fs for minority-spin electrons, respectively. The time-resolved studies of both the population and the linewidth of image-potential states manifest that at the magnetic surface not only inelastic but also quasielastic scattering processes are spin dependent.

SELECTION OF CITATIONS
SEARCH DETAIL
...