Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38578378

ABSTRACT

Nanoparticles (NPs) engineered as drug delivery systems continue to make breakthroughs as they offer numerous advantages over free therapeutics. However, the poor understanding of the interplay between the NPs and biomolecules, especially blood proteins, obstructs NP translation to clinics. Nano-bio interactions determine the NPs' in vivo fate, efficacy and immunotoxicity, potentially altering protein function. To fulfill the growing need to investigate nano-bio interactions, this study provides a systematic understanding of two key aspects: (i) protein corona (PC) formation and (ii) NP-induced modifications on protein's structure and stability. A methodology was developed by combining orthogonal techniques to analyze both quantitative and qualitative aspects of nano-bio interactions, using human serum albumin (HSA) as a model protein. Protein quantification via liquid chromatography-mass spectrometry, and capillary zone electrophoresis (CZE) clarified adsorbed protein quantity and stability. CZE further unveiled qualitative insights into HSA forms (native, glycated HSA and cysteinylated), while synchrotron radiation circular dichroism enabled analyzing HSA's secondary structure and thermal stability. Comparative investigations of NP cores (organic vs. hybrid), and shells (with or without polyethylene glycol (PEG)) revealed pivotal factors influencing nano-bio interactions. Polymeric NPs based on poly(lactic-co-glycolic acid) (PLGA) and hybrid NPs based on metal-organic frameworks (nanoMOFs) presented distinct HSA adsorption profiles. PLGA NPs had protein-repelling properties while inducing structural modifications on HSA. In contrast, HSA exhibited a high affinity for nanoMOFs forming a PC altering thereby the protein structure. A shielding effect was gained through PEGylation for both types of NPs, avoiding the PC formation as well as the alteration of unbound HSA structure.

2.
J Pharm Sci ; 113(6): 1645-1652, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38336007

ABSTRACT

Noble metal materials, especially platinum nanoparticles (Pt NPs), have immense potential in nanomedicine as therapeutic agents on account of their high electron density and their high surface area. Intravenous injection is proposed as the best mode to deliver the product to patients. However, our understanding of the reaction of nanoparticles with blood components, especially proteins, is far behind the explosive development of these agents. Using synchrotron radiation circular dichroism (SRCD), we investigated the structural and stability changes of human serum albumin (HSA) upon interaction with PEG-OH coated Pt NPs at nanomolar concentrations, conditions potentially encountered for intravenous injection. There is no strong complexation found between HSA and Pt NPs. However, for the highest molar ratio of NP:HSA of 1:1, an increase of 18 °C in the thermal unfolding of HSA was observed, which is attributed to increased thermal stability of HSA generated by preferential hydration. This work proposes a new and fast method to probe the potential toxicity of nanoparticles intended for clinical use with intravenous injection.


Subject(s)
Circular Dichroism , Metal Nanoparticles , Platinum , Serum Albumin , Humans , Platinum/chemistry , Metal Nanoparticles/chemistry , Serum Albumin/chemistry , Polyethylene Glycols/chemistry
3.
Int J Mol Sci ; 25(3)2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38338713

ABSTRACT

Under specific conditions, some proteins can self-assemble into fibrillar structures called amyloids. Initially, these proteins were associated with neurodegenerative diseases in eucaryotes. Nevertheless, they have now been identified in the three domains of life. In bacteria, they are involved in diverse biological processes and are usually useful for the cell. For this reason, they are classified as "functional amyloids". In this work, we focus our analysis on a bacterial functional amyloid called Hfq. Hfq is a pleiotropic regulator that mediates several aspects of genetic expression, mainly via the use of small noncoding RNAs. Our previous work showed that Hfq amyloid-fibrils interact with membranes. This interaction influences Hfq amyloid structure formation and stability, but the specifics of the lipid on the dynamics of this process is unknown. Here, we show, using spectroscopic methods, how lipids specifically drive and modulate Hfq amyloid assembly or, conversely, its disassembly. The reported effects are discussed in light of the consequences for bacterial cell life.


Subject(s)
Amyloid , RNA, Small Untranslated , Amyloid/metabolism , Amyloidogenic Proteins/metabolism , RNA, Small Untranslated/genetics , Bacteria/metabolism , Lipids , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism , RNA, Bacterial/genetics , Gene Expression Regulation, Bacterial
4.
Methods Mol Biol ; 2741: 399-416, 2024.
Article in English | MEDLINE | ID: mdl-38217665

ABSTRACT

Useful structural information about the conformation of nucleic acids can be quickly acquired by circular and linear dichroism (CD/LD) spectroscopy. These techniques, rely on the differential absorption of polarised light and are indeed extremely sensitive to subtle changes in the structure of chiral biomolecules. Many CD analyses of DNA or DNA:protein complexes have been conducted with substantial data acquisitions. Conversely, CD RNA analysis are still scarce, despite the fact that RNA plays a wide cellular function. This chapter seeks to introduce the reader to the use of circular, linear dichroism and in particular the use of Synchrotron Radiation for such samples. The use of these techniques on small noncoding RNA (sRNA) will be exemplified by analyzing changes in base stacking and/or helical parameters for the understanding of sRNA structure and function, especially by translating the dynamics of RNA:RNA annealing but also to access RNA stability or RNA:RNA alignment. The effect of RNA remodeling proteins will also be addressed. These analyses are especially useful to decipher the mechanisms by which sRNA will adopt the proper conformation thanks to the action of proteins such as Hfq or ProQ in the regulation of the expression of their target mRNAs.


Subject(s)
RNA, Small Untranslated , RNA, Small Untranslated/genetics , Proteins/metabolism , RNA, Messenger/metabolism , DNA , Circular Dichroism , Host Factor 1 Protein
5.
Molecules ; 28(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37959682

ABSTRACT

Microcin E492 (MccE492) is an antimicrobial peptide and proposed virulence factor produced by some Klebsiella pneumoniae strains, which, under certain conditions, form amyloid fibers, leading to the loss of its antibacterial activity. Although this protein has been characterized as a model functional amyloid, the secondary structure transitions behind its formation, and the possible effect of molecules that inhibit this process, have not been investigated. In this study, we examined the ability of the green tea flavonoid epigallocatechin gallate (EGCG) to interfere with MccE492 amyloid formation. Aggregation kinetics followed by thioflavin T binding were used to monitor amyloid formation in the presence or absence of EGCG. Additionally, synchrotron radiation circular dichroism (SRCD) and transmission electron microscopy (TEM) were used to study the secondary structure, thermal stability, and morphology of microcin E492 fibers. Our results showed that EGCG significantly inhibited the formation of the MccE492 amyloid, resulting in mainly amorphous aggregates and small oligomers. However, these aggregates retained part of the ß-sheet SRCD signal and a high resistance to heat denaturation, suggesting that the aggregation process is sequestered or deviated at some stage but not completely prevented. Thus, EGCG is an interesting inhibitor of the amyloid formation of MccE492 and other bacterial amyloids.


Subject(s)
Catechin , Polyphenols , Polyphenols/pharmacology , Tea , Amyloid/chemistry , Amyloidogenic Proteins , Catechin/pharmacology , Catechin/chemistry
6.
Sci Rep ; 13(1): 19036, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923897

ABSTRACT

To cope with environmental stresses, bacteria have developed different strategies, including the production of small heat shock proteins (sHSP). All sHSPs are described for their role as molecular chaperones. Some of them, like the Lo18 protein synthesized by Oenococcus oeni, also have the particularity of acting as a lipochaperon to maintain membrane fluidity in its optimal state following cellular stresses. Lipochaperon activity is poorly characterized and very little information is available on the domains or amino-acids key to this activity. The aim in this paper is to investigate the importance at the protein structure and function level of four highly conserved residues in sHSP exhibiting lipochaperon activity. Thus, by combining in silico, in vitro and in vivo approaches the importance of three amino-acids present in the core of the protein was shown to maintain both the structure of Lo18 and its functions.


Subject(s)
Amino Acids , Heat-Shock Proteins, Small , Heat-Shock Proteins, Small/metabolism , Molecular Chaperones/metabolism , Membrane Fluidity
7.
Commun Biol ; 6(1): 1075, 2023 10 21.
Article in English | MEDLINE | ID: mdl-37865695

ABSTRACT

Hfq is a pleitropic actor that serves as stress response and virulence factor in the bacterial cell. To execute its multiple functions, Hfq assembles into symmetric torus-shaped hexamers. Extending outward from the hexameric core, Hfq presents a C-terminal region, described as intrinsically disordered in solution. Many aspects of the role and the structure of this region remain unclear. For instance, in its truncated form it can promote amyloid-like filament assembly. Here, we show that a minimal 11-residue motif at the C-terminal end of Hfq assembles into filaments with amyloid characteristics. Our data suggest that the full-length Hfq in its filamentous state contains a similar molecular fingerprint than that of the short ß-strand peptide, and that the Sm-core structure is not affected by filament formation. Hfq proteins might thus co-exist in two forms in vivo, either as isolated, soluble hexamers or as self-assembled hexamers through amyloid-reminiscent interactions, modulating Hfq cellular functions.


Subject(s)
Escherichia coli Proteins , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Amyloid beta-Peptides/metabolism , Protein Binding , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism
8.
Int J Mol Sci ; 24(14)2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37511182

ABSTRACT

The possible carrier role of Outer Membrane Vesicles (OMVs) for small regulatory noncoding RNAs (sRNAs) has recently been demonstrated. Nevertheless, to perform their function, these sRNAs usually need a protein cofactor called Hfq. In this work we show, by using a combination of infrared and circular dichroism spectroscopies, that Hfq, after interacting with the inner membrane, can be translocated into the periplasm, and then be exported in OMVs, with the possibility to be bound to sRNAs. Moreover, we provide evidence that Hfq interacts with and is inserted into OMV membranes, suggesting a role for this protein in the release of sRNA outside the vesicle. These findings provide clues to the mechanism of host-bacteria interactions which may not be defined solely by protein-protein and protein-outer membrane contacts, but also by the exchange of RNAs, and in particular sRNAs.


Subject(s)
Escherichia coli Proteins , RNA, Small Untranslated , Escherichia coli/genetics , Escherichia coli/metabolism , Circular Dichroism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , RNA, Small Untranslated/genetics , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism , RNA, Bacterial/genetics , Gene Expression Regulation, Bacterial
9.
Bioorg Med Chem Lett ; 92: 129376, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37328039

ABSTRACT

Circular dichroism spectroscopy of nucleic acids has been traditionally performed at sample concentrations orders of magnitude lower than what occur in biological systems. While recent work from us demonstrated the flexibility of an adjustable sample cell that allowed for successful recording of CD spectra of an 18- and a 21-mer double stranded DNA sequences at around 1 mM, sample concentrations beyond 1 mM present a challenge for standard benchtop CD spectrometers. In the present work, the synchrotron radiation circular dichroism (SRCD) spectra were recorded for d(CG)9 and a mixed 18-mer double stranded DNA at 1, 5, and 10 mM in 100 mM or 4 M NaCl. SRCD of low molecular weight salmon DNA was also measured at a 10 mg/ml concentration. These results represent the first report of CD spectra of DNA samples measured at concentrations comparable to those found in the nucleus. The results suggest that dsDNA maintain very similar structures at concentrations up to tens of mg/ml, as evident by the very similar CD patterns in this concentration range. Furthermore, the SRCD allowed for the recording of CD patterns of DNA in the far UV region, which is not readily accessible by standard benchtop CD spectropolarimeters. These far UV signals appear to be quite characteristic of DNA structures and are sensitive to sample conditions.


Subject(s)
Oligonucleotides , Synchrotrons , Circular Dichroism , DNA
10.
Free Radic Biol Med ; 199: 113-125, 2023 04.
Article in English | MEDLINE | ID: mdl-36828293

ABSTRACT

Poldip2 was shown to be involved in oxidative signaling to ensure certain biological functions. It was proposed that, in VSMC, by interaction with the Nox4-associated membrane protein p22phox, Poldip2 stimulates the level of reactive oxygen species (ROS) production. In vitro, with fractionated membranes from HEK393 cells over-expressing Nox4, we confirmed the up-regulation of NADPH oxidase 4 activity by the recombinant and purified Poldip2. Besides Nox4, the Nox1, Nox2, or Nox3 isoforms are also established partners of the p22phox protein raising the question of their regulation by Poldip2 and of the effect in cells expressing simultaneously different Nox isoforms. In this study, we have addressed this issue by investigating the potential regulatory role of Poldip2 on NADPH oxidase 2, present in phagocyte cells. Unexpectedly, the effect of Poldip2 on phagocyte NADPH oxidase 2 was opposite to that observed on NADPH oxidase 4. Using membranes from circulating resting neutrophils, the ROS production rate of NADPH oxidase 2 was down-regulated by Poldip2 (2.5-fold). The down-regulation effect could not be correlated to the interaction of Poldip2 with p22phox but rather, to the interaction of Poldip2 with the p47phox protein, one of the regulatory proteins of the phagocyte NADPH oxidase. Our results show that the interaction of Poldip2 with p47phox constitutes a novel regulatory mechanism that can negatively modulate the activity of NADPH oxidase 2 by trapping the so-called "adaptor" subunit of the complex. Poldip2 could act as a tunable switch capable of specifically regulating the activities of NADPH oxidases. This selective regulatory role of Poldip2, positive for Nox4 or negative for Nox2 could orchestrate the level and the type of ROS generated by Nox enzymes in the cells.


Subject(s)
Membrane Proteins , NADPH Oxidases , NADPH Oxidase 4/genetics , NADPH Oxidase 2/genetics , Reactive Oxygen Species/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Isoforms
11.
Nucleic Acids Res ; 51(D1): D226-D231, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36280237

ABSTRACT

The Nucleic Acid Circular Dichroism Database (NACDDB) is a public repository that archives and freely distributes circular dichroism (CD) and synchrotron radiation CD (SRCD) spectral data about nucleic acids, and the associated experimental metadata, structural models, and links to literature. NACDDB covers CD data for various nucleic acid molecules, including DNA, RNA, DNA/RNA hybrids, and various nucleic acid derivatives. The entries are linked to primary sequence and experimental structural data, as well as to the literature. Additionally, for all entries, 3D structure models are provided. All entries undergo expert validation and curation procedures to ensure completeness, consistency, and quality of the data included. The NACDDB is open for submission of the CD data for nucleic acids. NACDDB is available at: https://genesilico.pl/nacddb/.


Subject(s)
Databases, Nucleic Acid , Nucleic Acids , Circular Dichroism , Synchrotrons , Nucleic Acids/chemistry
12.
Microorganisms ; 12(1)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38257880

ABSTRACT

Due to their two-cell membranes, Gram-negative bacteria are particularly resistant to antibiotics. Recent investigations aimed at exploring new target proteins involved in Gram-negative bacteria adaptation helped to identify environmental changes encountered during infection. One of the most promising approaches in finding novel targets for antibacterial drugs consists of blocking noncoding RNA-based regulation using the protein cofactor, Hfq. Although Hfq is important in many bacterial pathogens, its involvement in antibiotics response is still unclear. Indeed, Hfq may mediate drug resistance by regulating the major efflux system in Escherichia coli, but it could also play a role in the influx of antibiotics. Here, using an imaging approach, we addressed this problem quantitatively at the single-cell level. More precisely, we analyzed how Hfq affects the dynamic influx and efflux of ciprofloxacin, an antibiotic from the group of fluoroquinolones that is used to treat bacterial infections. Our results indicated that the absence of either whole Hfq or its C-terminal domain resulted in a more effective accumulation of ciprofloxacin, irrespective of the presence of the functional AcrAB-TolC efflux pump. However, overproduction of the MicF small regulatory RNA, which reduces the efficiency of expression of the ompF gene (coding for a porin involved in antibiotics influx) in a Hfq-dependent manner, resulted in impaired accumulation of ciprofloxacin. These results led us to propose potential mechanisms of action of Hfq in the regulation of fluoroquinolone fluxes across the E. coli envelope.

13.
Nat Commun ; 13(1): 7059, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36400783

ABSTRACT

Homochirality is a fundamental feature of all known forms of life, maintaining biomolecules (amino-acids, proteins, sugars, nucleic acids) in one specific chiral form. While this condition is central to biology, the mechanisms by which the adverse accumulation of non-L-α-amino-acids in proteins lead to pathophysiological consequences remain poorly understood. To address how heterochirality build-up impacts organism's health, we use chiral-selective in vivo assays to detect protein-bound non-L-α-amino acids (focusing on aspartate) and assess their functional significance in Drosophila. We find that altering the in vivo chiral balance creates a 'heterochirality syndrome' with impaired caspase activity, increased tumour formation, and premature death. Our work shows that preservation of homochirality is a key component of protein function that is essential to maintain homeostasis across the cell, tissue and organ level.


Subject(s)
Amino Acids , Proteins , Stereoisomerism , Amino Acids/chemistry , Proteins/chemistry
14.
J Struct Biol ; 214(4): 107912, 2022 12.
Article in English | MEDLINE | ID: mdl-36283630

ABSTRACT

The bacterial chromosomic DNA is packed within a membrane-less structure, the nucleoid, due to the association of DNA with proteins called Nucleoid Associated Proteins (NAPs). Among these NAPs, Hfq is one of the most intriguing as it plays both direct and indirect roles on DNA structure. Indeed, Hfq is best known to mediate post-transcriptional regulation by using small noncoding RNA (sRNA). Although Hfq presence in the nucleoid has been demonstrated for years, its precise role is still unclear. Recently, it has been shown in vitro that Hfq forms amyloid-like structures through its C-terminal region, hence belonging to the bridging family of NAPs. Here, using cryo soft X-ray tomography imaging of native unlabeled cells and using a semi-automatic analysis and segmentation procedure, we show that Hfq significantly remodels the Escherichia coli nucleoid. More specifically, Hfq influences nucleoid density especially during the stationary growth phase when it is more abundant. Our results indicate that Hfq could regulate nucleoid compaction directly via its interaction with DNA, but also at the post-transcriptional level via its interaction with RNAs. Taken together, our findings reveal a new role for this protein in nucleoid remodeling in vivo, that may serve in response to stress conditions and in adapting to changing environments.


Subject(s)
Escherichia coli Proteins , Escherichia coli , Escherichia coli/genetics , Tomography, X-Ray , DNA , Escherichia coli Proteins/genetics , Host Factor 1 Protein/genetics
15.
Int J Mol Sci ; 23(15)2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35955871

ABSTRACT

Hfq is a pleiotropic regulator that mediates several aspects of bacterial RNA metabolism. The protein notably regulates translation efficiency and RNA decay in Gram-negative bacteria, usually via its interaction with small regulatory RNAs. Previously, we showed that the Hfq C-terminal region forms an amyloid-like structure and that these fibrils interact with membranes. The immediate consequence of this interaction is a disruption of the membrane, but the effect on Hfq structure was unknown. To investigate details of the mechanism of interaction, the present work uses different in vitro biophysical approaches. We show that the Hfq C-terminal region influences membrane integrity and, conversely, that the membrane specifically affects the amyloid assembly. The reported effect of this bacterial master regulator on membrane integrity is discussed in light of the possible consequence on small regulatory RNA-based regulation.


Subject(s)
Escherichia coli Proteins , RNA, Bacterial , Amyloidogenic Proteins/metabolism , Bacteria/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Host Factor 1 Protein/genetics , Host Factor 1 Protein/metabolism , RNA, Bacterial/metabolism
16.
Methods Mol Biol ; 2538: 75-93, 2022.
Article in English | MEDLINE | ID: mdl-35951294

ABSTRACT

Small-angle scattering is a powerful technique to obtain structural information on biomacromolecules in aqueous solution at the sub-nanometer and nanometer length scales. It provides the sizes and overall shapes of the scattering particles. While small-angle X-ray scattering (SAXS) has often been used for structural analysis of a single-component system, small-angle neutron scattering (SANS) has been used to reveal the internal organization of a multicomponent system such as protein-protein and protein-DNA complexes. This is due to the fact that the neutron scattering length is largely different between hydrogen and deuterium, and thus it allows to make a specific component in complexes "invisible" to neutrons by changing the H2O/D2O ratio in the solvent with or without molecular deuteration. In this chapter, we describe a method to characterize the biomolecular structures using SANS and SAXS, in particular, focusing on fibrillar proteins such as bacterial amyloids and their complexes with nucleic acids.


Subject(s)
Neutron Diffraction , Neutrons , Amyloidogenic Proteins , DNA , Neutron Diffraction/methods , Scattering, Small Angle , X-Ray Diffraction , X-Rays
17.
Methods Mol Biol ; 2538: 145-163, 2022.
Article in English | MEDLINE | ID: mdl-35951299

ABSTRACT

Amyloid inhibitors, such as the green tea compound epigallocatechin gallate EGCG, apomorphine or curlicide, have antibacterial properties. Conversely, antibiotics such as tetracycline derivatives or rifampicin also affect eukaryotic amyloids formation and may be used to treat neurodegenerative diseases. This opens the possibility for existing drugs to be repurposed in view of new therapy, targeting amyloid-like proteins from eukaryotes to prokaryotes and conversely. Here we present how to evaluate the effect of these amyloid-forming inhibitors on bacterial amyloid self-assemblies in vitro and on bacterial survival. The different approaches possible are presented.


Subject(s)
Amyloidosis , Catechin , Amyloid/metabolism , Amyloidogenic Proteins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/metabolism , Catechin/pharmacology , Humans
18.
Methods Mol Biol ; 2538: 217-234, 2022.
Article in English | MEDLINE | ID: mdl-35951303

ABSTRACT

Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD), and orientated circular dichroism (OCD) are complementary spectroscopies widely used for the analysis of protein samples such as the amyloids commonly renowned as neurodegenerative agents. Determining the secondary structure content of proteins, such as aggregated ß-sheets inside the amyloids and in various environments, including membranes and lipids, has made these techniques very valuable and complemental to high-resolution techniques such as nuclear magnetic resonance (NMR), X-ray crystallography, and cryo-electron microscopy. FTIR and CD are extremely sensitive to structural changes of proteins due to environmental changes. Furthermore, FTIR provides information on lipid modifications upon protein binding, whereas synchrotron radiation CD (SRCD) and OCD are sensitive to the subtle structural changes occurring in ß-sheet-rich proteins and their orientation or alignment with lipid bilayers. FTIR and CD techniques allow the identification of parallel and antiparallel ß-sheet content and are therefore complementary. In this chapter, we present FTIR and CD/OCD applications to study the interactions of bacterial amyloids with membranes and lipids. Moreover, we show how to decipher the spectroscopic signals to obtain information on the molecular structure of amyloids and their interaction with lipids, addressing potential amyloid insertion into membranes and the lipid bilayer adjustments observed.


Subject(s)
Amyloid , Amyloidogenic Proteins , Amyloid/chemistry , Circular Dichroism , Cryoelectron Microscopy , Lipid Bilayers/chemistry , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared/methods
19.
Methods Mol Biol ; 2538: 319-333, 2022.
Article in English | MEDLINE | ID: mdl-35951309

ABSTRACT

Bacterial chromosomal DNA is packed within a non-membranous structure, the nucleoid, thanks to nucleoid associated proteins (NAPs). The role of bacterial amyloid has recently emerged among these NAPs, particularly with the nucleoid-associated protein Hfq that plays a direct role in DNA compaction. In this chapter, we present a 3D imaging technique, cryo-soft X-ray tomography (cryo-SXT) to obtain a detailed 3D visualization of subcellular bacterial structures, especially the nucleoid. Cryo-SXT imaging of native unlabeled cells enables observation of the nucleoid in 3D with a high resolution, allowing to evidence in vivo the role of amyloids on DNA compaction. The precise experimental methods to obtain 3D tomograms will be presented.


Subject(s)
Organelles , Tomography, X-Ray , Amyloidogenic Proteins , Bacterial Proteins , DNA , DNA, Bacterial , Imaging, Three-Dimensional/methods , Organelles/ultrastructure , Tomography, X-Ray/methods
20.
Int J Mol Sci ; 23(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35897833

ABSTRACT

X-ray photoelectron spectroscopy of bovine serum albumin (BSA) in a liquid jet is used to investigate the electronic structure of a solvated protein, yielding insight into charge transfer mechanisms in biological systems in their natural environment. No structural damage was observed in BSA following X-ray photoelectron spectroscopy in a liquid jet sample environment. Carbon and nitrogen atoms in different chemical environments were resolved in the X-ray photoelectron spectra of both solid and solvated BSA. The calculations of charge distributions demonstrate the difficulty of assigning chemical contributions in complex systems in an aqueous environment. The high-resolution X-ray core electron spectra recorded are unchanged upon solvation. A comparison of the valence bands of BSA in both phases is also presented. These bands display a higher sensitivity to solvation effects. The ionization energy of the solvated BSA is determined at 5.7 ± 0.3 eV. Experimental results are compared with theoretical calculations to distinguish the contributions of various molecular components to the electronic structure. This comparison points towards the role of water in hole delocalization in proteins.


Subject(s)
Serum Albumin , Water , Electronics , Photoelectron Spectroscopy , Serum Albumin, Bovine , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...