Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(9)2022 05 05.
Article in English | MEDLINE | ID: mdl-35563868

ABSTRACT

The drug efflux transporter P-glycoprotein (Pgp; ABCB1) plays an important role in drug absorption, disposition, and elimination. There is an ongoing debate whether, in addition to its localization at the plasma membrane, Pgp may also be expressed at the limiting membrane of endolysosomes (ELs), mediating active EL drug sequestration. If true, this would be an important mechanism to prevent drugs from reaching their intracellular targets. However, direct evidence demonstrating the functional expression of Pgp at the limiting membrane of ELs is lacking. This prompted us to perform a biochemical and ultrastructural study on the intracellular localization of Pgp in native rat liver. For this purpose, we established an improved subcellular fractionation procedure for the enrichment of ELs and employed different biochemical and ultrastructural methods to characterize the Pgp localization and function in the enriched EL fractions. Whereas the biochemical methods seemed to indicate that Pgp is functionally expressed at EL limiting membranes, transmission electron microscopy (TEM) indicated that this only occurs rarely, if at all. Instead, Pgp was found in the limiting membrane of early endosomes and intraluminal vesicles. In additional TEM experiments, using a Pgp-overexpressing brain microvessel endothelial cell line (hCMEC/D3-MDR1-EGFP), we examined whether Pgp is expressed at the limiting membrane of ELs when cells are exposed to high levels of the Pgp substrate doxorubicin. Pgp was seen in early endosomes but only rarely in endolysosomes, whereas Pgp immunogold labeling was detected in large autophagosomes. In summary, our data demonstrate the importance of combining biochemical and ultrastructural methods to investigate the relationship between Pgp localization and function.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , ATP Binding Cassette Transporter, Subfamily B/metabolism , Liver , Lysosomes , ATP Binding Cassette Transporter, Subfamily B/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Endosomes/metabolism , Liver/metabolism , Lysosomes/metabolism , Rats
2.
Fluids Barriers CNS ; 18(1): 36, 2021 Aug 03.
Article in English | MEDLINE | ID: mdl-34344390

ABSTRACT

BACKGROUND: In vitro models based on brain capillary endothelial cells (BCECs) are among the most versatile tools in blood-brain barrier research for testing drug penetration into the brain and how this is affected by efflux transporters such as P-glycoprotein (Pgp). However, compared to freshly isolated brain capillaries or primary BCECs, the expression of Pgp in immortalized BCEC lines is markedly lower, which prompted us previously to transduce the widely used human BCEC line hCMEC/D3 with a doxycycline-inducible MDR1-EGFP fusion plasmid. The EGFP-labeled Pgp in these cells allows studying the localization and trafficking of the transporter and how these processes are affected by drug exposure. Here we used this strategy for the rat BCEC line RBE4 and performed a face-to-face comparison of RBE4 and hCMEC/D3 wild-type (WT) and MDR1-EGFP transduced cells. METHODS: MDR1-EGFP-transduced variants were derived from WT cells by lentiviral transduction, using an MDR1-linker-EGFP vector. Localization, trafficking, and function of Pgp were compared in WT and MDR1-EGFP transduced cell lines. Primary cultures of rat BCECs and freshly isolated rat brain capillaries were used for comparison. RESULTS: All cells exhibited typical BCEC morphology. However, significant differences were observed in the localization of Pgp in that RBE4-MDR1-EGFP cells expressed Pgp primarily at the plasma membrane, whereas in hCMEC/D3 cells, the Pgp-EGFP fusion protein was visible both at the plasma membrane and in endolysosomal vesicles. Exposure to doxorubicin increased the number of Pgp-EGFP-positive endolysosomes, indicating a lysosomotropic effect. Furthermore, lysosomal trapping of doxorubicin was observed, likely contributing to the protection of the cell nucleus from damage. In cocultures of WT and MDR1-EGFP transduced cells, intercellular Pgp-EGFP trafficking was observed in RBE4 cells as previously reported for hCMEC/D3 cells. Compared to WT cells, the MDR1-EGFP transduced cells exhibited a significantly higher expression and function of Pgp. However, the junctional tightness of WT and MDR1-EGFP transduced RBE4 and hCMEC/D3 cells was markedly lower than that of primary BCECs, excluding the use of the cell lines for studying vectorial drug transport. CONCLUSIONS: The present data indicate that MDR1-EGFP transduced RBE4 cells are an interesting tool to study the biogenesis of lysosomes and Pgp-mediated lysosomal drug trapping in response to chemotherapeutic agents and other compounds at the level of the blood-brain barrier.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Green Fluorescent Proteins/metabolism , ATP Binding Cassette Transporter, Subfamily B/analysis , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/analysis , Animals , Blood-Brain Barrier/chemistry , Cell Line , Cell Line, Transformed , Endothelial Cells/chemistry , Green Fluorescent Proteins/analysis , Humans , Microscopy, Fluorescence/methods , Protein Transport/physiology , Rats , Rats, Wistar , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...