Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 568: 1213-1226, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27320732

ABSTRACT

Western North America is a region defined by extreme gradients in geomorphology and climate, which support a diverse array of ecological communities and natural resources. The region also has extreme gradients in mercury (Hg) contamination due to a broad distribution of inorganic Hg sources. These diverse Hg sources and a varied landscape create a unique and complex mosaic of ecological risk from Hg impairment associated with differential methylmercury (MeHg) production and bioaccumulation. Understanding the landscape-scale variation in the magnitude and relative importance of processes associated with Hg transport, methylation, and MeHg bioaccumulation requires a multidisciplinary synthesis that transcends small-scale variability. The Western North America Mercury Synthesis compiled, analyzed, and interpreted spatial and temporal patterns and drivers of Hg and MeHg in air, soil, vegetation, sediments, fish, and wildlife across western North America. This collaboration evaluated the potential risk from Hg to fish, and wildlife health, human exposure, and examined resource management activities that influenced the risk of Hg contamination. This paper integrates the key information presented across the individual papers that comprise the synthesis. The compiled information indicates that Hg contamination is widespread, but heterogeneous, across western North America. The storage and transport of inorganic Hg across landscape gradients are largely regulated by climate and land-cover factors such as plant productivity and precipitation. Importantly, there was a striking lack of concordance between pools and sources of inorganic Hg, and MeHg in aquatic food webs. Additionally, water management had a widespread influence on MeHg bioaccumulation in aquatic ecosystems, whereas mining impacts where relatively localized. These results highlight the decoupling of inorganic Hg sources with MeHg production and bioaccumulation. Together the findings indicate that developing efforts to control MeHg production in the West may be particularly beneficial for reducing food web exposure instead of efforts to simply control inorganic Hg sources.


Subject(s)
Environmental Pollutants/metabolism , Mercury/metabolism , Methylmercury Compounds/metabolism , Vertebrates/metabolism , Animals , Canada , Environmental Monitoring , Environmental Pollutants/analysis , Fishes/metabolism , Mercury/analysis , Methylmercury Compounds/analysis , Mexico , United States
2.
Sci Total Environ ; 571: 342-54, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27161906

ABSTRACT

Fish represent high quality protein and nutrient sources, but Hg contamination is ubiquitous in aquatic ecosystems and can pose health risks to fish and their consumers. Potential health risks posed to fish and humans by Hg contamination in fish were assessed in western Canada and the United States. A large compilation of inland fish Hg concentrations was evaluated in terms of potential health risk to the fish themselves, health risk to predatory fish that consume Hg contaminated fish, and to humans that consume Hg contaminated fish. The probability that a fish collected from a given location would exceed a Hg concentration benchmark relevant to a health risk was calculated. These exceedance probabilities and their associated uncertainties were characterized for fish of multiple size classes at multiple health-relevant benchmarks. The approach was novel and allowed for the assessment of the potential for deleterious health effects in fish and humans associated with Hg contamination in fish across this broad study area. Exceedance probabilities were relatively common at low Hg concentration benchmarks, particularly for fish in larger size classes. Specifically, median exceedances for the largest size classes of fish evaluated at the lowest Hg concentration benchmarks were 0.73 (potential health risks to fish themselves), 0.90 (potential health risk to predatory fish that consume Hg contaminated fish), and 0.97 (potential for restricted fish consumption by humans), but diminished to essentially zero at the highest benchmarks and smallest fish size classes. Exceedances of benchmarks are likely to have deleterious health effects on fish and limit recommended amounts of fish humans consume in western Canada and the United States. Results presented here are not intended to subvert or replace local fish Hg data or consumption advice, but provide a basis for identifying areas of potential health risk and developing more focused future research and monitoring efforts.


Subject(s)
Environmental Monitoring/methods , Fishes/metabolism , Food Contamination/analysis , Mercury/analysis , Water Pollutants, Chemical/analysis , Animals , Canada , Female , Humans , Male , Risk Assessment/methods , United States
3.
Sci Total Environ ; 568: 1171-1184, 2016 Oct 15.
Article in English | MEDLINE | ID: mdl-27102274

ABSTRACT

Methylmercury contamination of fish is a global threat to environmental health. Mercury (Hg) monitoring programs are valuable for generating data that can be compiled for spatially broad syntheses to identify emergent ecosystem properties that influence fish Hg bioaccumulation. Fish total Hg (THg) concentrations were evaluated across the Western United States (US) and Canada, a region defined by extreme gradients in habitat structure and water management. A database was compiled with THg concentrations in 96,310 fish that comprised 206 species from 4262 locations, and used to evaluate the spatial distribution of fish THg across the region and effects of species, foraging guilds, habitats, and ecoregions. Areas of elevated THg exposure were identified by developing a relativized estimate of fish mercury concentrations at a watershed scale that accounted for the variability associated with fish species, fish size, and site effects. THg concentrations in fish muscle ranged between 0.001 and 28.4 (µg/g wet weight (ww)) with a geometric mean of 0.17. Overall, 30% of individual fish samples and 17% of means by location exceeded the 0.30µg/g ww US EPA fish tissue criterion. Fish THg concentrations differed among habitat types, with riverine habitats consistently higher than lacustrine habitats. Importantly, fish THg concentrations were not correlated with sediment THg concentrations at a watershed scale, but were weakly correlated with sediment MeHg concentrations, suggesting that factors influencing MeHg production may be more important than inorganic Hg loading for determining fish MeHg exposure. There was large heterogeneity in fish THg concentrations across the landscape; THg concentrations were generally higher in semi-arid and arid regions such as the Great Basin and Desert Southwest, than in temperate forests. Results suggest that fish mercury exposure is widespread throughout Western US and Canada, and that species, habitat type, and region play an important role in influencing ecological risk of mercury in aquatic ecosystems.


Subject(s)
Environmental Exposure , Fishes/metabolism , Mercury/metabolism , Methylmercury Compounds/metabolism , Water Pollutants, Chemical/metabolism , Animals , Canada , Ecosystem , Environmental Monitoring , Fresh Water , United States
4.
Arch Environ Contam Toxicol ; 71(1): 16-25, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26801652

ABSTRACT

Most investigations of the environmental effects of mercury (Hg) have focused on aquatic food webs that include piscivorous fish or wildlife. However, recent investigations have shown that other species, including passerine songbirds, may also be at risk from exposure to methylmercury (MeHg). We quantified Hg concentrations in eggs of two species of songbirds, red-winged blackbirds (Agelaius phoeniceus) and tree swallows (Tachycineta bicolor), nesting in Voyageurs National Park, Minnesota, USA. Geometric mean concentrations of total Hg (THg) were lower in red-winged blackbird eggs [218 and 107 ng/g dry weight (dw) for 2012 and 2013, respectively] than in tree swallow eggs (228 and 300 ng/g dw for 2012 and 2013, respectively), presumably reflecting differences in the trophic positions of these two species. Concentrations of MeHg averaged 98.4 % of THg in red-winged blackbird eggs. Levels of THg observed in this study were well below critical toxicological benchmarks commonly applied to eggs of avian species, suggesting these breeding populations were not adversely affected by exposure to MeHg. In red-winged blackbirds, concentrations of THg in eggs collected in 2012 were twice those in eggs collected in 2013. Hg levels in eggs of both species increased with date of clutch initiation. In red-winged blackbirds, for example, temporal patterns showed that a 3-week delay in clutch initiation increased egg THg by 60 %. These observations indicate that in ovo exposure of wetland birds to MeHg can vary significantly within nesting season as well as between years.


Subject(s)
Environmental Monitoring , Environmental Pollutants/analysis , Mercury/analysis , Ovum/chemistry , Passeriformes , Animals , Minnesota
5.
Sci Total Environ ; 514: 192-201, 2015 May 01.
Article in English | MEDLINE | ID: mdl-25666279

ABSTRACT

Mercury (Hg) in water, sediment, soils, seston, and biota were quantified for three streams in the Grand Portage National Monument (GRPO) in far northeastern Minnesota to assess ecosystem contamination and the potential for harmful exposure of piscivorous fish, wildlife, and humans to methylmercury (MeHg). Concentrations of total Hg in water, sediment, and soil were typical of those in forest ecosystems within the region, whereas MeHg concentrations and percent MeHg in these ecosystem components were markedly higher than values reported elsewhere in the western Great Lakes Region. Soils and sediment were Hg-enriched, containing approximately 4-fold more total Hg per unit of organic matter. We hypothesized that localized Hg enrichment was due in part to anthropogenic pollution associated with historic fur-trading activity. Bottom-up forcing of bioaccumulation was evidenced by MeHg concentrations in larval dragonflies, which were near the maxima for dragonflies sampled concurrently from five other national park units in the region. Despite its semi-remote location, GRPO is a Hg-sensitive landscape in which MeHg is produced and bioaccumulated in aquatic food webs to concentrations that pose ecological risks to MeHg-sensitive piscivores, including predatory fish, belted kingfisher, and mink.


Subject(s)
Environmental Monitoring , Mercury/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Animals , Ecosystem , Fishes , Food Chain , Insecta/chemistry , Minnesota , Risk Assessment
6.
Environ Sci Technol ; 48(11): 6115-23, 2014 Jun 03.
Article in English | MEDLINE | ID: mdl-24837007

ABSTRACT

We present a case study comparing metrics of methylmercury (MeHg) contamination for four undeveloped lakes in Voyageurs National Park to wet atmospheric deposition of mercury (Hg), sulfate (SO4(-2)), and hydrogen ion (H+) in northern Minnesota. Annual wet Hg, SO4(-2), and H+ deposition rates at two nearby precipitation monitoring sites indicate considerable decreases from 1998 to 2012 (mean decreases of 32, 48, and 66%, respectively). Consistent with decreases in the atmospheric pollutants, epilimnetic aqueous methylmercury (MeHgaq) and mercury in small yellow perch (Hgfish) decreased in two of four lakes (mean decreases of 46.5% and 34.5%, respectively, between 2001 and 2012). Counter to decreases in the atmospheric pollutants, MeHgaq increased by 85% in a third lake, whereas Hgfish increased by 80%. The fourth lake had two disturbances in its watershed during the study period (forest fire; changes in shoreline inundation due to beaver activity); this lake lacked overall trends in MeHgaq and Hgfish. The diverging responses among the study lakes exemplify the complexity of ecosystem responses to decreased loads of atmospheric pollutants.


Subject(s)
Lakes/analysis , Mercury/analysis , Methylmercury Compounds/analysis , Water Pollutants, Chemical/analysis , Animals , Ecosystem , Lakes/chemistry , Minnesota , Perches/metabolism
8.
Environ Sci Technol ; 47(15): 8148-56, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23845042

ABSTRACT

We assessed the utility of larval burrowing dragonflies (Odonata: Anisoptera: Gomphidae) as biosentinels of methylmercury (MeHg) contamination. Gomphids were the most abundant family of dragonflies sampled during 2008-2010 from 17 lakes in four national parks of the northwestern Laurentian Great Lakes region. Ten species of burrowing gomphids were sampled; 13 lakes contained 3 or more species, and 2 species of Gomphus co-occurred in 12 lakes. Most of the total Hg (THg) in whole, late-instar larvae was MeHg, with mean percent MeHg exceeding 60% in 16 lakes. Mean MeHg in larvae of a given species varied greatly among lakes, ranging from 4 to 109 ng g(-1) dry weight. Methylmercury levels in larvae, however, were much less variable within a given lake and species. The mean concentration of MeHg in burrowing gomphids was positively correlated with mean MeHg concentration in unfiltered lake water. Mean concentrations of THg and MeHg in multispecies assemblages of Gomphus were also positively correlated with mean THg in coexisting prey fish and game fishes. We recommend-and provide guidance on-the application of burrowing gomphids as biosentinels of MeHg contamination, which can extend the bioassessment of MeHg to fishless fresh waters.


Subject(s)
Environmental Monitoring/methods , Food Chain , Fresh Water/chemistry , Larva/drug effects , Methylmercury Compounds/analysis , Odonata/drug effects , Water Pollutants, Chemical/analysis , Animals , Fishes , Methylmercury Compounds/toxicity , Odonata/growth & development , Water Pollutants, Chemical/toxicity
9.
Environ Toxicol Chem ; 31(7): 1536-47, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22549893

ABSTRACT

Threshold concentrations associated with adverse effects of dietary exposure to methylmercury (MeHg) were derived from published results of laboratory studies on a variety of fish species. Adverse effects related to mortality were uncommon, whereas adverse effects related to growth occurred only at dietary MeHg concentrations exceeding 2.5 µg g(-1) wet weight. Adverse effects on behavior of fish had a wide range of effective dietary concentrations, but generally occurred above 0.5 µg g(-1) wet weight. In contrast, effects on reproduction and other subclinical endpoints occurred at dietary concentrations that were much lower (<0.2 µg g(-1) wet wt). Field studies generally lack information on dietary MeHg exposure, yet available data indicate that comparable adverse effects have been observed in wild fish in environments corresponding to high and low MeHg contamination of food webs and are in agreement with the threshold concentrations derived here from laboratory studies. These thresholds indicate that while differences in species sensitivity to MeHg exposure appear considerable, chronic dietary exposure to low concentrations of MeHg may have significant adverse effects on wild fish populations but remain little studied compared to concentrations in mammals or birds.


Subject(s)
Diet , Fishes , Methylmercury Compounds/toxicity , Animals , Ecology , Ecotoxicology , Fishes/growth & development , Fishes/physiology , Food Chain , No-Observed-Adverse-Effect Level , Reproduction/drug effects
10.
Environ Pollut ; 161: 243-51, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22000118

ABSTRACT

The Laurentian Great Lakes region of North America contains substantial aquatic resources and mercury-contaminated landscapes, fish, and wildlife. This special issue emanated from a bi-national synthesis of data from monitoring programs and case studies of mercury in the region, here defined as including the Great Lakes, the eight U.S. states bordering the Great Lakes, the province of Ontario, and Lake Champlain. We provide a retrospective overview of the regional mercury problem and summarize new findings from the synthesis papers and case studies that follow. Papers in this issue examine the chronology of mercury accumulation in lakes, the importance of wet and dry atmospheric deposition and evasion to regional mercury budgets, the influence of land-water linkages on mercury contamination of surface waters, the bioaccumulation of methylmercury in aquatic foods webs; and ecological and health risks associated with methylmercury in a regionally important prey fish.


Subject(s)
Lakes/chemistry , Mercury/analysis , Water Pollutants, Chemical/analysis , Atmosphere/chemistry , Environmental Monitoring , Food Chain , Geologic Sediments/chemistry , Great Lakes Region , Mercury/metabolism , Water Pollutants, Chemical/metabolism , Water Pollution, Chemical/statistics & numerical data
11.
Environ Pollut ; 161: 350-7, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22024153

ABSTRACT

We assessed the risks of mercury in yellow perch, a species important in the trophic transfer of methylmercury, in the Great Lakes region. Mean concentrations in whole perch from 45 (6.5%) of 691 waters equaled or exceeded 0.20 µg/g w.w., a threshold for adverse effects in fish. In whole perch within the size range eaten by common loons (<100 g), mean concentrations exceeded a dietary threshold (0.16 µg/g w.w.) for significant reproductive effects on loons in 19 (7.3%) of 260 waters. Mean concentrations in fillets of perch with length ≥ 15.0 cm, the minimum size retained by anglers, exceeded the USEPA criterion (0.3 µg/g w.w.) in 26 (6.4%) of 404 U.S. waters and exceeded the Ontario guideline (0.26 µg/g w.w.) in 35 (20%) of 179 Ontario waters. Mercury levels in yellow perch in some waters within this region pose risks to perch, to common loons, and to mercury-sensitive human populations.


Subject(s)
Mercury/toxicity , Perches/physiology , Water Pollutants, Chemical/toxicity , Animals , Environmental Exposure/analysis , Environmental Exposure/statistics & numerical data , Female , Food Chain , Great Lakes Region , Lakes/chemistry , Male , Mercury/analysis , Mercury/metabolism , Risk Assessment , Toxicology , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism
12.
Ecotoxicology ; 20(7): 1713-25, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21901443

ABSTRACT

A partnership of federal and state agencies, tribes, industry, and scientists from academic research and environmental organizations is establishing a national, policy-relevant mercury monitoring network, called MercNet, to address key questions concerning changes in anthropogenic mercury emissions and deposition, associated linkages to ecosystem effects, and recovery from mercury contamination. This network would quantify mercury in the atmosphere, land, water, and biota in terrestrial, freshwater, and coastal ecosystems to provide a national scientific capability for evaluating the benefits and effectiveness of emission controls. Program development began with two workshops, convened to establish network goals, to select key indicators for monitoring, to propose a geographic network of monitoring sites, and to design a monitoring plan. MercNet relies strongly on multi-institutional partnerships to secure the capabilities and comprehensive data that are needed to develop, calibrate, and refine predictive mercury models and to guide effective management. Ongoing collaborative efforts include the: (1) development of regional multi-media databases on mercury in the Laurentian Great Lakes, northeastern United States, and eastern Canada; (2) syntheses and reporting of these data for the scientific and policy communities; and (3) evaluation of potential monitoring sites. The MercNet approach could be applied to the development of other monitoring programs, such as emerging efforts to monitor and assess global mercury emission controls.


Subject(s)
Environmental Monitoring/methods , Mercury/analysis , Water Pollutants, Chemical/analysis , Administrative Personnel , Atmosphere/chemistry , Lakes/chemistry , Mercury/pharmacokinetics , Methylmercury Compounds/analysis , Methylmercury Compounds/pharmacokinetics , Risk Assessment , United States , Water Pollutants, Chemical/pharmacokinetics
13.
Ecotoxicology ; 20(7): 1487-99, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21909960

ABSTRACT

This special issue examines bioaccumulation and risks of methylmercury in food webs, fish and wildlife in the Laurentian Great Lakes region of North America, and explores mercury policy in the region and elsewhere in the United States and Canada. A total of 35 papers emanated from a bi-national synthesis of multi-media data from monitoring programs and research investigations on mercury in aquatic and terrestrial biota, a 3-year effort involving more than 170 scientists and decision-makers from 55 different universities, non-governmental organizations, and governmental agencies. Over 290,000 fish mercury data points were compiled from monitoring programs and research investigations. The findings from this scientific synthesis indicate that (1) mercury remains a pollutant of major concern in the Great Lakes region, (2) that the scope and intensity of the problem is greater than previously recognized and (3) that after decades of declining mercury levels in fish and wildlife concentrations are now increasing in some species and areas. While the reasons behind these shifting trends require further study, they also underscore the need to identify information gaps and expand monitoring efforts to better track progress. This will be particularly important as new pollution prevention measures are implemented, as global sources increase, and as the region faces changing environmental conditions.


Subject(s)
Ecology , Environmental Exposure/analysis , Lakes , Mercury/analysis , Mercury/pharmacokinetics , Methylmercury Compounds/pharmacokinetics , Animals , Canada , Environmental Monitoring/methods , Environmental Pollution/analysis , Fishes , Food Chain , Great Lakes Region , Humans , Methylmercury Compounds/analysis , Policy , Water Pollutants, Chemical/analysis
14.
Environ Sci Technol ; 42(3): 871-7, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18323115

ABSTRACT

Monitoring of mercury in fish typically involves removal of individuals from the sampled population and subsequent analysis of fillets. This study assessed whether the analysis of fins, structures routinely clipped to mark released fish in population studies, could provide a nonlethal approach for estimating mercury concentrations in axial muscle (fillets). We analyzed fillets and selected fins from 401 northern pike (Esox lucius) and 79 walleye (Sander vitreus) from 21 lakes in Minnesota and Wisconsin, 19 Arctic grayling (Thymallus arcticus) from Toolik Lake, Alaska, and 14 winter flounder (Pseudopleuronectes americanus) from Long Island Sound, New York. On average, 83% of mercury in fins was methylmercury, and concentrations in the proximal portion were about half-those in the distal portion in pelvic fins. Mean concentrations of mercury in fins, averaged by species and fin type, ranged from 2.7 to 8.9% of those in fillets. Coefficients of determination (r2) for linear regressions of mercury concentrations in fillets against those in fins of individual fish ranged from 0.04 to 0.96 among species and water bodies (median r2 = 0.52). The concentration in fin clips was a better predictor of mercury in fillets for individual Arctic grayling (r2 = 0.65, n = 12 and r2 = 0.84, n = 8) and winter flounder (r2 = 0.94, n = 14) than for individual northern pike (median r2 = 0.56) or walleye (median r2 = 0.22) from a given lake. In northern pike in the 400-500 mm total-length interval, the mean concentrations of total mercury in caudal fins and fillets, averaged by lake (n = 12), were strongly correlated (r2 = 0.95). The analysis of composited samples of fin clips from fish within a restricted length interval could, therefore, be a useful screening tool for assessing the relative mercury contamination of fish among different water bodies.


Subject(s)
Animal Structures/chemistry , Environmental Monitoring/methods , Fishes/metabolism , Mercury/analysis , Methylmercury Compounds/analysis , Animals , Fresh Water , Minnesota , New York , Regression Analysis , Wisconsin
15.
Ecol Appl ; 18(8 Suppl): A3-11, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19475915

ABSTRACT

The Coast Range of California is one of five global regions that dominated historical production of mercury (Hg) until declining demand led to the economic collapse of the Hg-mining industry in the United States. Calcines, waste rock, and contaminated alluvium from inactive mine sites can release Hg (including methylmercury, MeHg) to the environment for decades to centuries after mining has ceased. Soils, water, and sediment near mines often contain high concentrations of total Hg (TotHg), and an understanding of the biogeochemical transformations, transport, and bioaccumulation of this toxic metal is needed to assess effects of these contaminated environments on humans and wildlife. We briefly review the environmental behavior and effects of Hg, providing a prelude to the subsequent papers in this Special Issue. Clear Lake is a northern California lake contaminated by wastes from the abandoned Sulphur Bank Mercury Mine, a U.S. Environmental Protection Agency Superfund Site. The primary toxicological problem with Hg in aquatic ecosystems is biotic exposure to MeHg, a highly toxic compound that readily bioaccumulates. Processes that affect the abundance of MeHg (including methylation and demethylation) strongly affect its concentration in all trophic levels of aquatic food webs. MeHg can biomagnify to high concentrations in aquatic food webs, and consumption of fish is the primary pathway for human exposure. Fish consumption advisories have been issued for many North American waters, including Clear Lake and other mine-impacted waters in California, as a means of decreasing MeHg exposure. Concerns about MeHg exposure in humans focus largely on developmental neurotoxicity to the fetus and children. Aquatic food webs are also an important pathway for MeHg exposure of wildlife, which can accumulate high, sometimes harmful, concentrations. In birds, wild mammals, and humans, MeHg readily passes to the developing egg, embryo, or fetus, life stages that are much more sensitive than the adult. The papers in this issue examine the origin, transport, transformations, bioaccumulation, and trophic transfer of Hg in Clear Lake, assess its potential effects on biota and humans, and provide information relevant to remediation of mine-impacted aquatic ecosystems.


Subject(s)
Ecosystem , Fresh Water/chemistry , Mercury/metabolism , Mining , Water Pollutants, Chemical/metabolism , Animals , California , Fishes , Geologic Sediments/chemistry , Humans , Mercury/chemistry , Mollusca , Water Pollutants, Chemical/chemistry
16.
Environ Sci Technol ; 36(5): 877-83, 2002 Mar 01.
Article in English | MEDLINE | ID: mdl-11918010

ABSTRACT

We examined effects of dietary methylmercury (MeHg) on reproduction of fathead minnows (Pimephales promelas). Juvenile fish were fed one of four diets until sexual maturity (phase 1): a control diet (0.06 microg Hg g(-1) dry weight) and three diets contaminated with MeHg at 0.88 (low), 4.11 (medium), and 8.46 microg Hg g(-1) dry weight (high). At sexual maturity, male and female fish were paired, again fed one of the four diets, and allowed to reproduce (phase 2). To assess effects of MeHg during gametogenesis, some fish were fed diets during phase 2 that differed from those during phase 1. Spawning success of pairs fed the same diet during phases 1 and 2 was 75% for controls and 46%, 50%, and 36% for the low-, medium-, and high-MeHg treatments, respectively. Spawning success of pairs fed a contaminated diet during phase 1 and a control diet during phase 2 was 63%, 40%, and 14% for the low-, medium-, and high-MeHg treatments, respectively, whereas exposure to dietary MeHg only during phase 2 did not reduce spawning success. Dietary MeHg delayed spawning, and days to spawning was positively correlated with concentration of total mercury in the carcasses of test fish. MeHg reduced the instantaneous rate of reproduction of fish fed the same diets during phases 1 and 2. Both the gonadosomatic index and reproductive effort of female fish were inversely correlated with mercury in carcasses, whereas developmental and hatching success of embryos, 7-d survival, and 7-d growth of larvae were unrelated to mercury concentrations in parental fish or their diets. MeHg decreased reproduction of adult fathead minnows at dietary concentrations encountered by predatory fishes in aquatic systems with MeHg-contaminated food webs, implying that exposed fish populations could be adversely affected by this widespread contaminant.


Subject(s)
Cyprinidae/physiology , Methylmercury Compounds/toxicity , Reproduction/drug effects , Administration, Oral , Animals , Diet , Dose-Response Relationship, Drug , Female , Larva/growth & development , Male , Methylmercury Compounds/pharmacokinetics , Survival , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...