Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Immunother Cancer ; 12(5)2024 May 23.
Article in English | MEDLINE | ID: mdl-38782540

ABSTRACT

BACKGROUND: Approximately half of the neuroblastoma patients develop high-risk neuroblastoma. Current treatment involves a multimodal strategy, including immunotherapy with dinutuximab (IgG ch14.18) targeting GD2. Despite achieving promising results, the recurrence rate remains high and poor survival persists. The therapeutic efficacy of dinutuximab is compromised by suboptimal activation of neutrophils and severe neuropathic pain, partially induced by complement activation. METHODS: To enhance neutrophil cytotoxicity, IgG ch14.18 was converted to the IgA isotype, resulting in potent neutrophil-mediated antibody-dependent cell-mediated cytotoxicity (ADCC), without complement activation. However, myeloid checkpoint molecules hamper neutrophil cytotoxicity, for example through CD47 that is overexpressed on neuroblastomas and orchestrates an immunosuppressive environment upon ligation to signal regulatory protein alpha (SIRPα) expressed on neutrophils. In this study, we combined IgA therapy with CD47 blockade. RESULTS: In vitro killing assays showed enhanced IgA-mediated ADCC by neutrophils targeting neuroblastoma cell lines and organoids in comparison to IgG. Notably, when combined with CD47 blockade, both IgG and IgA therapy were enhanced, though the combination with IgA resulted in the greatest improvement of ADCC. Furthermore, in a neuroblastoma xenograft model, we systemically blocked CD47 with a SIRPα fusion protein containing an ablated IgG1 Fc, and compared IgA therapy to IgG therapy. Only IgA therapy combined with CD47 blockade increased neutrophil influx to the tumor microenvironment. Moreover, the IgA combination strategy hampered tumor outgrowth most effectively and prolonged tumor-specific survival. CONCLUSION: These promising results highlight the potential to enhance immunotherapy efficacy against high-risk neuroblastoma through improved neutrophil cytotoxicity by combining IgA therapy with CD47 blockade.


Subject(s)
CD47 Antigen , Immunoglobulin A , Neuroblastoma , Neutrophils , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/metabolism , CD47 Antigen/immunology , Humans , Neuroblastoma/immunology , Neuroblastoma/drug therapy , Neutrophils/immunology , Neutrophils/metabolism , Animals , Mice , Immunoglobulin A/immunology , Immunoglobulin A/pharmacology , Immunoglobulin A/metabolism , Cell Line, Tumor , Antibody-Dependent Cell Cytotoxicity , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Xenograft Model Antitumor Assays , Immunotherapy/methods , Female , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use
2.
Cancer Cell ; 42(2): 283-300.e8, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38181797

ABSTRACT

Pediatric patients with high-risk neuroblastoma have poor survival rates and urgently need more effective treatment options with less side effects. Since novel and improved immunotherapies may fill this need, we dissect the immunoregulatory interactions in neuroblastoma by single-cell RNA-sequencing of 24 tumors (10 pre- and 14 post-chemotherapy, including 5 pairs) to identify strategies for optimizing immunotherapy efficacy. Neuroblastomas are infiltrated by natural killer (NK), T and B cells, and immunosuppressive myeloid populations. NK cells show reduced cytotoxicity and T cells have a dysfunctional profile. Interaction analysis reveals a vast immunoregulatory network and identifies NECTIN2-TIGIT as a crucial immune checkpoint. Combined blockade of TIGIT and PD-L1 significantly reduces neuroblastoma growth, with complete responses (CR) in vivo. Moreover, addition of TIGIT+PD-L1 blockade to standard relapse treatment in a chemotherapy-resistant Th-ALKF1174L/MYCN 129/SvJ syngeneic model induces CR. In conclusion, our integrative analysis provides promising targets and a rationale for immunotherapeutic combination strategies.


Subject(s)
B7-H1 Antigen , Neuroblastoma , Humans , Child , Neoplasm Recurrence, Local , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Receptors, Immunologic/genetics , Immunotherapy , Sequence Analysis, RNA
3.
Eur J Cancer ; 194: 113347, 2023 11.
Article in English | MEDLINE | ID: mdl-37832507

ABSTRACT

Immunotherapy has ignited hope to cure paediatric solid tumours that resist traditional therapies. Among the most promising methods is adoptive cell therapy (ACT). Particularly, ACT using T cells equipped with chimeric antigen receptors (CARs) has moved into the spotlight in clinical studies. However, the efficacy of ACT is challenged by ACT-intrinsic factors, like lack of activation or T cell exhaustion, as well as immune evasion strategies of paediatric solid tumours, such as their highly immunosuppressive microenvironment. Novel strategies, including ACT using innate-like lymphocytes, innovative cell engineering techniques, and ACT combination therapies, are being developed and will be crucial to overcome these challenges. Here, we discuss the main classes of ACT for the treatment of paediatric extracranial solid tumours, reflect on the available preclinical and clinical evidence supporting promising strategies, and address the challenges that ACT is still facing. Ultimately, we highlight state-of-the-art developments and opportunities for new therapeutic options, which hold great potential for improving outcomes in this challenging patient population.


Subject(s)
Neoplasms , Receptors, Chimeric Antigen , Humans , Child , Immunotherapy, Adoptive/methods , Neoplasms/therapy , T-Lymphocytes , Immunotherapy , Tumor Microenvironment
4.
J Immunol ; 211(2): 229-240, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37294309

ABSTRACT

Immunotherapy development for solid tumors remains challenging, partially due to a lack of reproducible, cost-effective in vitro three-dimensional (3D) models to mimic the heterogeneous and complex tumor microenvironment. Here, we investigate the cellular anti-tumor reactivity of αß T cells engineered to express a defined γδ TCR (TEG A3). For that purpose, we developed a 3D cytotoxicity assay targeting cell line-derived spheroids or patient-derived tumor organoids formed in serum-free media. Tumor cell lysis by TEG A3 was monitored using the Incucyte S3 live-cell imaging system with the apoptosis marker caspase 3/7 green and endpoint readouts of IFN-γ secretion in the supernatant. The 3D cytotoxicity assay model system was able to adequately demonstrate TEG A3 reactivity toward targets expressing an isoform of CD277 (CD277J). To obtain a more complex heterogeneous tumor microenvironment, patient-derived organoids were mixed with unmatched patient-derived fibroblasts or matched cancer-associated fibroblasts. In all assays, we demonstrated the tumor target specificity of TEG A3, lysing tumor cells within 48 h. Our study demonstrates the utility of complex 3D cytotoxicity assay model systems incorporating the tumor microenvironment in the functional evaluation of T cell-based adoptive immunotherapy, providing a useful platform for early-stage preclinical development of immunotherapies.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , T-Lymphocytes , Immunotherapy, Adoptive/methods , Immunotherapy , Cell- and Tissue-Based Therapy , Tumor Microenvironment
5.
J Immunother Cancer ; 10(12)2022 12.
Article in English | MEDLINE | ID: mdl-36521927

ABSTRACT

BACKGROUND: Immunotherapy in high-risk neuroblastoma (HR-NBL) does not live up to its full potential due to inadequate (adaptive) immune engagement caused by the extensive immunomodulatory capacity of HR-NBL. We aimed to tackle one of the most notable immunomodulatory processes in neuroblastoma (NBL), absence of major histocompatibility complex class I (MHC-I) surface expression, a process greatly limiting cytotoxic T cell engagement. We and others have previously shown that MHC-I expression can be induced by cytokine-driven immune modulation. Here, we aimed to identify tolerable pharmacological repurposing strategies to upregulate MHC-I expression and therewith enhance T cell immunogenicity in NBL. METHODS: Drug repurposing libraries were screened to identify compounds enhancing MHC-I surface expression in NBL cells using high-throughput flow cytometry analyses optimized for adherent cells. The effect of positive hits was confirmed in a panel of NBL cell lines and patient-derived organoids. Compound-treated NBL cell lines and organoids were cocultured with preferentially expressed antigen of melanoma (PRAME)-reactive tumor-specific T cells and healthy-donor natural killer (NK) cells to determine the in vitro effect on T cell and NK cell cytotoxicity. Additional immunomodulatory effects of histone deacetylase inhibitors (HDACi) were identified by transcriptome and translatome analysis of treated organoids. RESULTS: Drug library screening revealed MHC-I upregulation by inhibitor of apoptosis inhibitor (IAPi)- and HDACi drug classes. The effect of IAPi was limited due to repression of nuclear factor kappa B (NFκB) pathway activity in NBL, while the MHC-I-modulating effect of HDACi was widely translatable to a panel of NBL cell lines and patient-derived organoids. Pretreatment of NBL cells with the HDACi entinostat enhanced the cytotoxic capacity of tumor-specific T cells against NBL in vitro, which coincided with increased expression of additional players regulating T cell cytotoxicity (eg, TAP1/2 and immunoproteasome subunits). Moreover, MICA and MICB, important in NK cell cytotoxicity, were also increased by entinostat exposure. Intriguingly, this increase in immunogenicity was accompanied by a shift toward a more mesenchymal NBL cell lineage. CONCLUSIONS: This study indicates the potential of combining (immuno)therapy with HDACi to enhance both T cell-driven and NKcell-driven immune responses in patients with HR-NBL.


Subject(s)
Killer Cells, Natural , Neuroblastoma , Humans , Cell Lineage , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Histocompatibility Antigens Class I , T-Lymphocytes, Cytotoxic , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Epigenesis, Genetic
6.
Front Immunol ; 13: 827786, 2022.
Article in English | MEDLINE | ID: mdl-36172363

ABSTRACT

Tissue-resident memory T cells (TRM) are suspected drivers of chronic inflammation, but their induction remains unclear. Since endothelial cells (EC) are obligate interaction partners for T cells trafficking into inflamed tissues, they may play a role in TRM development. Here, we used an in vitro co-culture system of human cytokine-activated EC and FACS-sorted T cells to study the effect of EC on T(RM) cell differentiation. T cell phenotypes were assessed by flow cytometry, including proliferation measured by CellTrace Violet dilution assay. Soluble mediators were analyzed by multiplex immunoassay. Co-culture of T cells with cytokine-activated, but not resting EC induced CD69 expression without activation (CD25, Ki67) or proliferation. The dynamic of CD69 expression induced by EC was distinct from that induced by TCR triggering, with rapid induction and stable expression over 7 days. CD69 induction by activated EC was higher in memory than naive T cells, and most pronounced in CD8+ effector memory T cells. Early CD69 induction was mostly mediated by IL-15, whereas later effects were also mediated by interactions with ICAM-1 and/or VCAM-1. CD69+ T cells displayed a phenotype associated with tissue-residency, with increased CD49a, CD103, CXCR6, PD-1 and CD57 expression, and decreased CD62L and S1PR1. EC-induced CD69+ T cells were poised for high production of pro-inflammatory cytokines and showed increased expression of T-helper 1 transcription factor T-bet. Our findings demonstrate that activated EC can induce functional specialization in T cells with sustained CD69 expression, increased cytokine response and a phenotypic profile reminiscent of TRM. Interaction with activated EC during transmigration into (inflamed) tissues thus contributes to TRM-residency priming.


Subject(s)
Immunologic Memory , CD8-Positive T-Lymphocytes/metabolism , Cell Communication , Cytokines/metabolism , Endothelial Cells/metabolism , Humans , Integrin alpha1/metabolism , Intercellular Adhesion Molecule-1/metabolism , Interleukin-15/metabolism , Ki-67 Antigen/metabolism , Programmed Cell Death 1 Receptor/metabolism , Receptors, Antigen, T-Cell/metabolism , Transcription Factors/metabolism , Vascular Cell Adhesion Molecule-1/metabolism
7.
Rheumatology (Oxford) ; 61(5): 2144-2155, 2022 05 05.
Article in English | MEDLINE | ID: mdl-34387304

ABSTRACT

OBJECTIVE: JDM is a rare chronic immune-mediated inflammatory disease with a predominant role for type I IFN responses. We aimed to determine the potential of Siglec-1 expression on monocytes as a novel IFN-inducible biomarker for disease activity monitoring and prediction of treatment response in patients with JDM. METHODS: Siglec-1 was measured by flow cytometry on circulating monocytes of 21 newly diagnosed JDM patients before start of treatment and, for 10 of these, also during follow-up. The expression levels of five type I IFN-stimulated genes, MX1, IFI44, IFI44L, LY6E and IFIT3, were measured by RT-qPCR to determine the IFN signature and calculate an IFN score. IFN-inducible plasma proteins CXCL10 and galectin-9 were measured by multiplex immunoassay. RESULTS: Siglec-1 and IFN score were increased in JDM patients compared with controls and correlated with clinical disease activity. Stratification of patients by Siglec-1 expression at diagnosis identified those with high Siglec-1 expression as having a higher risk of requiring treatment intensification within the first 3 months after diagnosis (55% vs 0% of patients, P = 0.01). Siglec-1 expression strongly correlated with plasma levels of previously validated biomarkers CXCL10 (rs = 0.81, P < 0.0001) and galectin-9 (rs = 0.83, P < 0.0001), and was superior to the IFN score in predicting treatment response (area under the curve 0.87 vs 0.53, P = 0.01). CONCLUSION: Siglec-1 on monocytes is a novel IFN-inducible biomarker in JDM that correlates with clinical disease activity and identifies patients at risk for a suboptimal treatment response. Further studies are required to validate these findings and their clinical potential.


Subject(s)
Dermatomyositis , Antiviral Agents , Biomarkers , Dermatomyositis/metabolism , Galectins , Humans , Interferons/metabolism , Monocytes/metabolism , Sialic Acid Binding Ig-like Lectin 1
8.
J Pers Med ; 11(9)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34575646

ABSTRACT

Cancer immunotherapy has transformed the landscape of adult cancer treatment and holds a great promise to treat paediatric malignancies. However, in vitro test coculture systems to evaluate the efficacy of immunotherapies on representative paediatric tumour models are lacking. Here, we describe a detailed procedure for the establishment of an ex vivo test coculture system of paediatric tumour organoids and immune cells that enables assessment of different immunotherapy approaches in paediatric tumour organoids. We provide a step-by-step protocol for an efficient generation of patient-derived diffuse intrinsic pontine glioma (DIPG) and neuroblastoma organoids stably expressing eGFP-ffLuc transgenes using defined serum-free medium. In contrast to the chromium-release assay, the new platform allows for visualization, monitoring and robust quantification of tumour organoid cell cytotoxicity using a non-radioactive assay in real-time. To evaluate the utility of this system for drug testing in the paediatric immuno-oncology field, we tested our in vitro assay using a clinically used immunotherapy strategy for children with high-risk neuroblastoma, dinutuximab (anti-GD2 monoclonal antibody), on GD2 proficient and deficient patient-derived neuroblastoma organoids. We demonstrated the feasibility and sensitivity of our ex vivo coculture system using human immune cells and paediatric tumour organoids as ex vivo tumour models. Our study provides a novel platform for personalized testing of potential anticancer immunotherapies for aggressive paediatric cancers such as neuroblastoma and DIPG.

9.
J Pers Med ; 11(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34575700

ABSTRACT

Currently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αß-T cells engineered to express a defined γδ-T cell receptor, which can recognize and kill target cells independent of MHC-I. In a co-culture killing assay, we showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling showed this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independent of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced αß-T cells or endogenous γδ-T cells. Our data suggest that TEG002 may be a promising novel treatment option for a subset of neuroblastoma patients.

10.
Arthritis Rheumatol ; 73(7): 1329-1333, 2021 07.
Article in English | MEDLINE | ID: mdl-33497020

ABSTRACT

OBJECTIVE: To assess anti-cytosolic 5'-nucleotidase 1A (anti-cN-1A) autoantibodies in children with juvenile dermatomyositis (DM) and healthy controls, using 3 different methods of antibody detection, as well as verification of the results in an independent cohort. METHODS: Anti-cN-1A reactivity was assessed in 34 Dutch juvenile DM patients and 20 healthy juvenile controls using the following methods: a commercially available full-length cN-1A enzyme-linked immunosorbent assay (ELISA), a synthetic peptide ELISA, and immunoblotting with a lysate from cN-1A-expressing HEK 293 cells. Sera from juvenile DM patients with active disease and those with disease in remission were analyzed. An independent British cohort of 110 juvenile DM patients and 43 healthy juvenile controls was assessed using an in-house full-length cN-1A ELISA. RESULTS: Anti-cN-1A reactivity was not present in sera from juvenile DM patients or healthy controls when tested with the commercially available full-length cN-1A ELISA or by immunoblotting, in either active disease or disease in remission. Additionally, in the British juvenile DM cohort, anti-cN-1A reactivity was not detected. Three Dutch juvenile DM patients had weakly positive results for 1 of 3 synthetic cN-1A peptides measured by ELISA. CONCLUSION: Juvenile DM patients and young healthy individuals did not show anti-cN-1A reactivity as assessed by different antibody detection techniques.


Subject(s)
5'-Nucleotidase/immunology , Autoantibodies/immunology , Dermatomyositis/immunology , Adolescent , Case-Control Studies , Child , Child, Preschool , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoblotting , Male
11.
Eur J Cancer ; 144: 123-150, 2021 02.
Article in English | MEDLINE | ID: mdl-33341446

ABSTRACT

Immunotherapy holds great promise for the treatment of pediatric cancers. In neuroblastoma, the recent implementation of anti-GD2 antibody Dinutuximab into the standard of care has improved patient outcomes substantially. However, 5-year survival rates are still below 50% in patients with high-risk neuroblastoma, which has sparked investigations into novel immunotherapeutic approaches. T cell-engaging therapies such as immune checkpoint blockade, antibody-mediated therapy and adoptive T cell therapy have proven remarkably successful in a range of adult cancers but still meet challenges in pediatric oncology. In neuroblastoma, their limited success may be due to several factors. Neuroblastoma displays low immunogenicity due to its low mutational load and lack of MHC-I expression. Tumour infiltration by T and NK cells is especially low in high-risk neuroblastoma and is prognostic for survival. Only a small fraction of tumour-infiltrating lymphocytes shows tumour reactivity. Moreover, neuroblastoma tumours employ a variety of immune evasion strategies, including expression of immune checkpoint molecules, induction of immunosuppressive myeloid and stromal cells, as well as secretion of immunoregulatory mediators, which reduce infiltration and reactivity of immune cells. Overcoming these challenges will be key to the successful implementation of novel immunotherapeutic interventions. Combining different immunotherapies, as well as personalised strategies, may be promising approaches. We will discuss the composition, function and prognostic value of tumour-infiltrating lymphocytes (TIL) in neuroblastoma, reflect on challenges for immunotherapy, including a lack of TIL reactivity and tumour immune evasion strategies, and highlight opportunities for immunotherapy and future perspectives with regard to state-of-the-art developments in the tumour immunology space.


Subject(s)
Immunologic Factors/therapeutic use , Immunotherapy/methods , Molecular Targeted Therapy , Neuroblastoma/drug therapy , Tumor Microenvironment/immunology , Animals , Humans , Neuroblastoma/immunology , Neuroblastoma/pathology , Prognosis
12.
Rheumatology (Oxford) ; 60(2): 785-801, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32810267

ABSTRACT

OBJECTIVES: Vasculopathy is an important hallmark of systemic chronic inflammatory connective tissue diseases (CICTD) and is associated with increased cardiovascular risk. We investigated disease-specific biomarker profiles associated with endothelial dysfunction, angiogenic homeostasis and (tissue) inflammation, and their relation to disease activity in rare CICTD. METHODS: A total of 38 serum proteins associated with endothelial (dys)function and inflammation were measured by multiplex-immunoassay in treatment-naive patients with localized scleroderma (LoS, 30), eosinophilic fasciitis (EF, 8) or (juvenile) dermatomyositis (34), 119 (follow-up) samples during treatment, and 65 controls. Data were analysed by unsupervised clustering, Spearman correlations, non-parametric t test and ANOVA. RESULTS: The systemic CICTD, EF and dermatomyositis, had distinct biomarker profiles, with 'signature' markers galectin-9 (dermatomyositis) and CCL4, CCL18, CXCL9, fetuin, fibronectin, galectin-1 and TSP-1 (EF). In LoS, CCL18, CXCL9 and CXCL10 were subtly increased. Furthermore, dermatomyositis and EF shared upregulation of markers related to interferon (CCL2, CXCL10), endothelial activation (VCAM-1), inhibition of angiogenesis (angiopoietin-2, sVEGFR-1) and inflammation/leucocyte chemo-attraction (CCL19, CXCL13, IL-18, YKL-40), as well as disturbance of the Angiopoietin-Tie receptor system and VEGF-VEGFR system. These profiles were related to disease activity, and largely normalized during treatment. However, a subgroup of CICTD patients showed continued elevation of CXCL10, CXCL13, galectin-9, IL-18, TNFR2, VCAM-1, and/or YKL-40 during clinically inactive disease, possibly indicating subclinical interferon-driven inflammation and/or endothelial dysfunction. CONCLUSION: CICTD-specific biomarker profiles revealed an anti-angiogenic, interferon-driven environment during active disease, with incomplete normalization under treatment. This warrants further investigation into monitoring of vascular biomarkers during clinical follow-up, or targeted interventions to minimize cardiovascular risk in the long term.


Subject(s)
Biomarkers/blood , Dermatomyositis , Endothelium, Vascular/immunology , Eosinophilia , Fasciitis , Scleroderma, Localized , Autoimmunity , Chemokine CXCL10/blood , Chemokine CXCL13/blood , Dermatomyositis/blood , Dermatomyositis/diagnosis , Eosinophilia/blood , Eosinophilia/diagnosis , Fasciitis/blood , Fasciitis/diagnosis , Female , Galectins/blood , Heart Disease Risk Factors , Humans , Male , Middle Aged , Monitoring, Immunologic/methods , Netherlands , Patient Acuity , Receptors, Tumor Necrosis Factor, Type II/blood , Scleroderma, Localized/blood , Scleroderma, Localized/diagnosis , Vascular Cell Adhesion Molecule-1/blood
13.
JCI Insight ; 5(18)2020 09 17.
Article in English | MEDLINE | ID: mdl-32809975

ABSTRACT

Tregs are crucial for maintaining maternal immunotolerance against the semiallogeneic fetus. We investigated the elusive transcriptional profile and functional adaptation of human uterine Tregs (uTregs) during pregnancy. Uterine biopsies, from placental bed (materno-fetal interface) and incision site (control) and blood were obtained from women with uncomplicated pregnancies undergoing cesarean section. Tregs and CD4+ non-Tregs were isolated for transcriptomic profiling by Cel-Seq2. Results were validated on protein and single cell levels by flow cytometry. Placental bed uTregs showed elevated expression of Treg signature markers, including FOXP3, CTLA-4, and TIGIT. Their transcriptional profile was indicative of late-stage effector Treg differentiation and chronic activation, with increased expression of immune checkpoints GITR, TNFR2, OX-40, and 4-1BB; genes associated with suppressive capacity (HAVCR2, IL10, LAYN, and PDCD1); and transcription factors MAF, PRDM1, BATF, and VDR. uTregs mirrored non-Treg Th1 polarization and tissue residency. The particular transcriptional signature of placental bed uTregs overlapped strongly with that of tumor-infiltrating Tregs and was remarkably pronounced at the placental bed compared with uterine control site. In conclusion, human uTregs acquire a differentiated effector Treg profile similar to tumor-infiltrating Tregs, specifically at the materno-fetal interface. This introduces the concept of site-specific transcriptional adaptation of Tregs within 1 organ.


Subject(s)
Adaptation, Physiological , Fetus/metabolism , Lymphocytes, Tumor-Infiltrating/immunology , Neoplasms/pathology , Placenta/metabolism , T-Lymphocytes, Regulatory/immunology , Uterus/metabolism , Cesarean Section , Female , Fetus/immunology , Humans , Lymphocytes, Tumor-Infiltrating/metabolism , Maternal-Fetal Exchange , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/metabolism , Placenta/immunology , Pregnancy , T-Lymphocytes, Regulatory/metabolism , Transcriptome , Uterus/immunology
14.
Arthritis Rheumatol ; 72(7): 1214-1226, 2020 07.
Article in English | MEDLINE | ID: mdl-32103637

ABSTRACT

OBJECTIVE: Juvenile dermatomyositis (DM) is a heterogeneous systemic immune-mediated vasculopathy. This study was undertaken to 1) identify inflammation/endothelial dysfunction-related biomarker profiles reflecting disease severity at diagnosis, and 2) establish whether such biomarker profiles could be used for predicting the response to treatment in patients with juvenile DM. METHODS: In total, 39 biomarkers related to activation of endothelial cells, endothelial dysfunction, and inflammation were measured using multiplex technology in serum samples from treatment-naive patients with juvenile DM from 2 independent cohorts (n = 30 and n = 29). Data were analyzed by unsupervised hierarchical clustering, nonparametric tests with correction for multiple comparisons, and Kaplan-Meier tests with Cox proportional hazards models for analysis of treatment duration. Myositis-specific antibodies (MSAs) were measured in the patients' serum using line blot assays. RESULTS: Severe vasculopathy in patients with juvenile DM was associated with low serum levels of intercellular adhesion molecule 1 (Spearman's rho [rs ] = 0.465, P = 0.0111) and high serum levels of endoglin (rs = -0.67, P < 0.0001). In the discovery cohort, unsupervised hierarchical clustering analysis of the biomarker profiles yielded 2 distinct patient clusters, of which the smaller cluster (cluster 1; n = 8) exhibited high serum levels of CXCL13, CCL19, galectin-9, CXCL10, tumor necrosis factor receptor type II (TNFRII), and galectin-1 (false discovery rate <0.0001), and this cluster had greater severity of muscle disease and global disease activity (each P < 0.05 versus cluster 2). In the validation cohort, correlations between the serum levels of galectin-9, CXCL10, TNFRII, and galectin-1 and the severity of global disease activity were confirmed (rs = 0.40-0.52, P < 0.05). Stratification of patients according to the 4 confirmed biomarkers identified a cluster of patients with severe symptoms (comprising 64.7% of patients) who were considered at high risk of requiring more intensive treatment in the first 3 months after diagnosis (P = 0.0437 versus other cluster). Moreover, high serum levels of galectin-9, CXCL10, and TNFRII were predictive of a longer total treatment duration (P < 0.05). The biomarker-based clusters were not evidently correlated with patients' MSA serotypes. CONCLUSION: Results of this study confirm the heterogeneity of new-onset juvenile DM based on serum biomarker profiles. Patients with high serum levels of galectin-9, CXCL10, TNFRII, and galectin-1 may respond suboptimally to conventional treatment, and may therefore benefit from more intensive monitoring and/or treatment.


Subject(s)
Dermatomyositis/drug therapy , Dermatomyositis/metabolism , Immunosuppressive Agents/therapeutic use , Biomarkers , Chemokine CCL19/immunology , Chemokine CXCL10/immunology , Chemokine CXCL13/immunology , Child , Child, Preschool , Cohort Studies , Dermatomyositis/immunology , Duration of Therapy , Endoglin/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Female , Galectin 1/metabolism , Galectins/metabolism , Humans , Inflammation/immunology , Intercellular Adhesion Molecule-1/metabolism , Male , Prognosis , Proportional Hazards Models , Receptors, Tumor Necrosis Factor, Type II/immunology
15.
Arthritis Rheumatol ; 71(8): 1377-1390, 2019 08.
Article in English | MEDLINE | ID: mdl-30861625

ABSTRACT

OBJECTIVE: Objective evaluation of disease activity is challenging in patients with juvenile dermatomyositis (DM) due to a lack of reliable biomarkers, but it is crucial to avoid both under- and overtreatment of patients. Recently, we identified 2 proteins, galectin-9 and CXCL10, whose levels are highly correlated with the extent of juvenile DM disease activity. This study was undertaken to validate galectin-9 and CXCL10 as biomarkers for disease activity in juvenile DM, and to assess their disease specificity and potency in predicting the occurrence of flares. METHODS: Levels of galectin-9 and CXCL10 were measured by multiplex immunoassay in serum samples from 125 unique patients with juvenile DM in 3 international cross-sectional cohorts and a local longitudinal cohort. The disease specificity of both proteins was examined in 50 adult patients with DM or nonspecific myositis (NSM) and 61 patients with other systemic autoimmune diseases. RESULTS: Both cross-sectionally and longitudinally, galectin-9 and CXCL10 outperformed the currently used laboratory marker, creatine kinase (CK), in distinguishing between juvenile DM patients with active disease and those in remission (area under the receiver operating characteristic curve [AUC] 0.86-0.90 for galectin-9 and CXCL10; AUC 0.66-0.68 for CK). The sensitivity and specificity for active disease in juvenile DM was 0.84 and 0.92, respectively, for galectin-9 and 0.87 and 1.00, respectively, for CXCL10. In 10 patients with juvenile DM who experienced a flare and were prospectively followed up, continuously elevated or rising biomarker levels suggested an imminent flare up to several months before the onset of symptoms, even in the absence of elevated CK levels. Galectin-9 and CXCL10 distinguished between active disease and remission in adult patients with DM or NSM (P = 0.0126 for galectin-9 and P < 0.0001 for CXCL10) and were suited for measurement in minimally invasive dried blood spots (healthy controls versus juvenile DM, P = 0.0040 for galectin-9 and P < 0.0001 for CXCL10). CONCLUSION: In this study, galectin-9 and CXCL10 were validated as sensitive and reliable biomarkers for disease activity in juvenile DM. Implementation of these biomarkers into clinical practice as tools to monitor disease activity and guide treatment might facilitate personalized treatment strategies.


Subject(s)
Chemokine CXCL10/blood , Dermatomyositis/blood , Dermatomyositis/diagnosis , Galectins/blood , Severity of Illness Index , Adolescent , Adult , Biomarkers/blood , Child , Creatine Kinase/blood , Cross-Sectional Studies , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Predictive Value of Tests , Prospective Studies , Reproducibility of Results , Sensitivity and Specificity , Young Adult
16.
Ann Rheum Dis ; 77(12): 1810-1814, 2018 12.
Article in English | MEDLINE | ID: mdl-30185417

ABSTRACT

OBJECTIVE: The interferon (IFN) signature is related to disease activity and vascular disease in systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) and represents a promising therapeutic target. Quantification of the IFN signature is currently performed by gene expression analysis, limiting its current applicability in clinical practice. Therefore, the objective of this study was to establish an easy to measure biomarker for the IFN signature. METHODS: Serum levels of galectin-9, CXCL-10 (IP-10) and tumour necrosis factor receptor type II (TNF-RII) were measured in patients with SLE, SLE+APS and primary APS (PAPS) and healthy controls (n=148) after an initial screening of serum analytes in a smaller cohort (n=43). Analytes were correlated to measures of disease activity and the IFN signature. The performance of galectin-9, CXCL-10 and TNF-RII as biomarkers to detect the IFN signature was assessed by receiver operating characteristic curves. RESULTS: Galectin-9, CXCL-10 and TNF-RII were elevated in patients with SLE, SLE+APS and PAPS (p<0.05) and correlated with disease activity and tissue factor expression. Galectin-9 correlated stronger than CXCL-10 or TNF-RII with the IFN score (r=0.70, p<0.001) and was superior to CXCL-10 or TNF-RII in detecting the IFN signature (area under the curve (AUC) 0.86). Importantly, in patients with SLE(±APS), galectin-9 was also superior to anti-dsDNA antibody (AUC 0.70), or complement C3 (AUC 0.70) and C4 (AUC 0.78) levels in detecting the IFN signature. CONCLUSION: Galectin-9 is a novel, easy to measure hence clinically applicable biomarker to detect the IFN signature in patients with systemic autoimmune diseases such as SLE and APS.


Subject(s)
Antiphospholipid Syndrome/blood , Biomarkers/blood , Galectins/blood , Interferons/analysis , Lupus Erythematosus, Systemic/blood , Adult , Antiphospholipid Syndrome/immunology , Female , Humans , Lupus Erythematosus, Systemic/immunology , Male , Middle Aged
17.
Front Immunol ; 9: 2951, 2018.
Article in English | MEDLINE | ID: mdl-30619311

ABSTRACT

Juvenile Dermatomyositis (JDM) is a systemic immune-mediated disease of childhood, characterized by muscle weakness, and a typical skin rash. Other organ systems and tissues such as the lungs, heart, and intestines can be involved, but may be under-evaluated. The inflammatory process in JDM is characterized by an interferon signature and infiltration of immune cells such as T cells and plasmacytoid dendritic cells into the affected tissues. Vasculopathy due to loss and dysfunction of endothelial cells as a result of the inflammation is thought to underlie the symptoms in most organs and tissues. JDM is a heterogeneous disease, and several disease phenotypes, each with a varying combination of affected tissues and organs, are linked to the presence of myositis autoantibodies. These autoantibodies have therefore been extensively studied as biomarkers for the disease phenotype and its associated prognosis. Next to identifying the JDM phenotype, monitoring of disease activity and disease-inflicted damage not only in muscle and skin, but also in other organs and tissues, is an important part of clinical follow-up, as these are key determinants for the long-term outcomes of patients. Various monitoring tools are currently available, among which clinical assessment, histopathological investigation of muscle and skin biopsies, and laboratory testing of blood for specific biomarkers. These investigations also give novel insights into the underlying immunological processes that drive inflammation in JDM and suggest a strong link between the interferon signature and vasculopathy. New tools are being developed in the quest for minimally invasive, but sensitive and specific diagnostic methods that correlate well with clinical symptoms or reflect local, low-grade inflammation. In this review we will discuss the types of (extra)muscular tissue inflammation in JDM and their relation to vasculopathic changes, critically assess the available diagnostic methods including myositis autoantibodies and newly identified biomarkers, and reflect on the immunopathogenic implications of identified markers.


Subject(s)
Autoantibodies/immunology , Dermatomyositis/immunology , Vascular Diseases/immunology , Biomarkers/analysis , Biopsy , Child , Dermatomyositis/diagnosis , Dermatomyositis/pathology , Humans , Muscle, Skeletal/immunology , Muscle, Skeletal/pathology , Prognosis , Skin/immunology , Skin/pathology , Vascular Diseases/diagnosis , Vascular Diseases/pathology
18.
Rheumatology (Oxford) ; 56(12): 2204-2211, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29029283

ABSTRACT

Objectives: Previous research demonstrated decreased cardiorespiratory fitness (CRF) in patients with JDM during active disease and remission. However, longitudinal data regarding trajectories of CRF are currently lacking. The objective of this study was to determine trajectories of CRF in patients with both monocyclic and chronic JDM, and to identify potential predictors of these trajectories. Methods: Thirty-six patients with JDM [median age (interquartile range) at diagnosis: 8.3 (6.3-15.4) years] treated in our paediatric rheumatology outpatient clinic were included. All patients performed multiple cardiopulmonary exercise tests between 2003 and 2016. Relevant CRF parameters were analysed, including peak oxygen uptake, maximal workload, mechanical efficacy and oxygen uptake at ventilatory anaerobic threshold. We analysed trajectories up to 10 years after diagnosis and determined predictors of CRF outcome parameters by multilevel analyses. Results: Trajectories demonstrated significant declines in CRF during the active phase of the disease with subsequent improvement in CRF during the initial years after diagnosis. However, hereafter no further improvements, and even a decrease, in CRF were observed over time in both monocyclic and chronic subtypes of JDM. We found that a longer disease duration, younger age of onset and higher prednisone dose negatively influence CRF. Conclusion: Patients with both monocyclic and chronic JDM show decreases in long-term CRF trajectories. Longer disease duration, younger age of onset and higher prednisone dose negatively influence CRF. This study stresses the need for regular evaluation of CRF and implementation of (exercise) interventions to improve CRF in patients with JDM, even in monocyclic patients.


Subject(s)
Cardiorespiratory Fitness/physiology , Dermatomyositis/physiopathology , Adolescent , Anaerobic Threshold/physiology , Case-Control Studies , Child , Exercise Test/methods , Exercise Tolerance/physiology , Female , Humans , Male , Oxygen Consumption/physiology , Time Factors
19.
Oncotarget ; 6(24): 20037-42, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26343524

ABSTRACT

Mutations in STAT3 have recently been shown to cause autoimmune diseases through increased lymphoproliferation. We describe a novel Pro471Arg STAT3 mutation in a patient with multiple autoimmune diseases, causing hyperactivation of the Th17 pathway. We show that IL-17 production by primary T cells was enhanced and could not be further increased by IL-6, while IL-10 reduced Th17 cell numbers. Moreover, specific inhibition of STAT3 activation resulted in diminished IL-17 production. We show that the Pro471Arg STAT3 mutation yields both increased levels of IgA and IgG, probably due to high IL-21 levels. When remission was reached through medical intervention, IL-17 levels normalized and the clinical symptoms improved, supporting the idea that STAT3 gain-of-function mutations can cause hyperactivation of the Th17 pathway and thereby contribute to autoimmunity.


Subject(s)
STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/immunology , Th17 Cells/immunology , Adolescent , Autoimmunity/immunology , Female , Humans , Mutation , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...