Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(16): 23114-23121, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-32752312

ABSTRACT

We present an optically pumped terahertz gas laser, which is based on a mid-infrared quantum-cascade laser as a pump source, a transversely pumped standing wave resonator, and 15NH3 as a gain medium. We observe several laser lines around 4.5 THz, corresponding to rotational transitions in the ν2 band of ammonia. So far, these are the highest frequencies obtained from a QCL-pumped THz gas laser. The involved molecular transitions are unambiguously identified by high-resolution spectroscopy.

2.
Opt Express ; 25(24): 30203-30213, 2017 Nov 27.
Article in English | MEDLINE | ID: mdl-29221052

ABSTRACT

We report on real-time gas sensing with a terahertz quantum-cascade laser (QCL). The method is solely based on the modulation of the external cavity length, exploiting the intermediate optical feedback regime. While the QCL is operated in continuous-wave mode, optical feedback results in a change of the QCL frequency as well as its terminal voltage. The first effect is exploited to tune the lasing frequency across a molecular absorption line. The second effect is used for the detection of the self-mixing signal. This allows for fast measurement times on the order of 10 ms per spectrum and for real-time measurements of gas concentrations with a rate of 100 Hz. This technique is demonstrated with a mixture of D2O and CH3OD in an absorption cell.

3.
Opt Express ; 24(13): 13839-49, 2016 Jun 27.
Article in English | MEDLINE | ID: mdl-27410547

ABSTRACT

We report on a high-spectral-resolution terahertz imaging system operating with a multi-mode quantum-cascade laser (QCL), a fast scanning mirror, and a sensitive Ge:Ga detector. By tuning the frequency of the QCL, several spectra can be recorded in 1.5 s during the scan through a gas cell filled with methanol (CH3OH). These experiments yield information about the local absorption and the linewidth. Measurements with a faster frame rate of up to 3 Hz allow for the dynamic observation of CH3OH gas leaking from a terahertz-transparent tube into the evacuated cell. In addition to the relative absorption, the local pressure is mapped by exploiting the effect of pressure broadening.

SELECTION OF CITATIONS
SEARCH DETAIL
...