Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
BMC Ecol Evol ; 23(1): 61, 2023 10 16.
Article in English | MEDLINE | ID: mdl-37840152

ABSTRACT

Bats provide ecologically and agriculturally important ecosystem services but are currently experiencing population declines caused by multiple environmental stressors, including mortality from white-nose syndrome and wind energy development. Analyses of the current and future health and viability of these species may support conservation management decision making. Demographic modeling provides a quantitative tool for decision makers and conservation managers to make more informed decisions, but widespread adoption of these tools can be limited because of the complexity of the mathematical, statistical, and computational components involved in implementing these models. In this work, we provide an exposition of the BatTool R package, detailing the primary components of the matrix projection model, a publicly accessible graphical user interface ( https://rconnect.usgs.gov/battool ) facilitating user-defined scenario analyses, and its intended uses and limitations (Wiens et al., US Geol Surv Data Release 2022; Wiens et al., US Geol Surv Softw Release 2022). We present a case study involving wind energy permitting, weighing the effects of potential mortality caused by a hypothetical wind energy facility on the projected abundance of four imperiled bat species in the Midwestern United States.


Subject(s)
Chiroptera , Animals , Ecosystem , Wind , Nose , Demography
2.
Ecol Evol ; 12(11): e9547, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36447592

ABSTRACT

White-nose syndrome has been decimating populations of several bat species since its first occurrence in the Northeastern United States in the winter 2006-2007. The spread of the disease has been monitored across the continent through the collaboration of many organizations. Inferring the rate of spread of the disease and predicting its arrival at new locations is critical when assessing the current and predicting the future status and trends of bat species. We developed a model of disease spread that simultaneously achieves high-predictive performance, computational efficiency, and interpretability. We modeled white-nose syndrome spread using Gaussian process variations to infer the spread rate of the disease front, identify areas of anomalous time of arrival, and provide future forecasts of the expected time of arrival throughout North America. Cross-validation of model predictive performance identified a stationary Gaussian process without an additional residual error process as the best-supported model. Results indicated that white-nose syndrome is likely to spread throughout the entire continental United States by 2030. These annually updatable model predictions will be useful in determining the horizon over which disease management actions must take place as well as in status and trend assessments of disease-affected bats.

SELECTION OF CITATIONS
SEARCH DETAIL
...