Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
iScience ; 26(1): 105728, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36582822

ABSTRACT

In Neurodevelopmental Disorders, alterations of synaptic plasticity may trigger structural changes in neuronal circuits involved in cognitive functions. This hypothesis was tested in mice carrying the human R451C mutation of Nlgn3 gene (NLG3R451C KI), found in some families with autistic children. To this aim, the spike time dependent plasticity (STDP) protocol was applied to immature GABAergic Mossy Fibers (MF)-CA3 connections in hippocampal slices from NLG3R451C KI mice. These animals failed to exhibit STD-LTP, an effect that persisted in adulthood when these synapses became glutamatergic. Similar results were obtained in mice lacking the Nlgn3 gene (NLG3 KO mice), suggesting a loss of function. The loss of STD-LTP was associated with a premature shift of GABA from the depolarizing to the hyperpolarizing direction, a reduced BDNF availability and TrkB phosphorylation at potentiated synapses. These effects may constitute a general mechanism underlying cognitive deficits in those forms of Autism caused by synaptic dysfunctions.

2.
J Neurosci ; 42(30): 5830-5842, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35701161

ABSTRACT

For many decades, synaptic plasticity was believed to be restricted to excitatory transmission. However, in recent years, this view started to change, and now it is recognized that GABAergic synapses show distinct forms of activity-dependent long-term plasticity, but the underlying mechanisms remain obscure. Herein, we asked whether signaling mediated by ß1 or ß3 subunit-containing integrins might be involved in regulating the efficacy of GABAergic synapses, including the NMDA receptor-dependent inhibitory long-term potentiation (iLTP) in the hippocampus. We found that activation of ß3 integrin with fibrinogen induced a stable depression, whereas inhibition of ß1 integrin potentiated GABAergic synapses at CA1 pyramidal neurons in male mice. Additionally, compounds that interfere with the interaction of ß1 or ß3 integrins with extracellular matrix blocked the induction of NMDA-iLTP. In conclusion, we provide the first evidence that integrins are key players in regulating the endogenous modulatory mechanisms of GABAergic inhibition and plasticity in the hippocampus.SIGNIFICANCE STATEMENT Epilepsy, schizophrenia, and anxiety are just a few medical conditions associated with dysfunctional inhibitory synaptic transmission. GABAergic synapses are known for their extraordinary susceptibility to modulation by endogenous factors and exogenous pharmacological agents. We describe here that integrins, adhesion proteins, play a key role in the modulation of inhibitory synaptic transmission. Specifically, we show that interference with integrin-dependent adhesion results in a variety of effects on the amplitude and frequency of GABAergic mIPSCs. Activation of ß3 subunit-containing integrins induces inhibitory long-term depression, whereas the inhibition of ß1 subunit-containing integrins induces iLTP. Our results unveil an important mechanism controlling synaptic inhibition, which opens new avenues into the usage of integrin-aimed pharmaceuticals as modulators of GABAergic synapses.


Subject(s)
Integrins , Synaptic Transmission , Animals , Hippocampus/metabolism , Integrins/metabolism , Male , Mice , Neuronal Plasticity/physiology , Pyramidal Cells/physiology , Synapses/physiology , Synaptic Transmission/physiology
3.
Cells ; 10(8)2021 08 11.
Article in English | MEDLINE | ID: mdl-34440823

ABSTRACT

Long-term synaptic plasticity is shaped by the controlled reorganization of the synaptic proteome. A key component of this process is local proteolysis performed by the family of extracellular matrix metalloproteinases (MMPs). In recent years, considerable progress was achieved in identifying extracellular proteases involved in neuroplasticity phenomena and their protein substrates. Perisynaptic metalloproteinases regulate plastic changes at synapses through the processing of extracellular and membrane proteins. MMP9 was found to play a crucial role in excitatory synapses by controlling the NMDA-dependent LTP component. In addition, MMP3 regulates the L-type calcium channel-dependent form of LTP as well as the plasticity of neuronal excitability. Both MMP9 and MMP3 were implicated in memory and learning. Moreover, altered expression or mutations of different MMPs are associated with learning deficits and psychiatric disorders, including schizophrenia, addiction, or stress response. Contrary to excitatory drive, the investigation into the role of extracellular proteolysis in inhibitory synapses is only just beginning. Herein, we review the principal mechanisms of MMP involvement in the plasticity of excitatory transmission and the recently discovered role of proteolysis in inhibitory synapses. We discuss how different matrix metalloproteinases shape dynamics and turnover of synaptic adhesome and signal transduction pathways in neurons. Finally, we discuss future challenges in exploring synapse- and plasticity-specific functions of different metalloproteinases.


Subject(s)
Matrix Metalloproteinases/metabolism , Neural Inhibition/physiology , Neuronal Plasticity/physiology , Synapses/physiology , Animals , Humans , Learning/physiology , Long-Term Potentiation/physiology , Proteolysis , Synapses/metabolism , gamma-Aminobutyric Acid/metabolism
4.
Cell Mol Life Sci ; 78(5): 2279-2298, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32959071

ABSTRACT

Learning and memory are known to depend on synaptic plasticity. Whereas the involvement of plastic changes at excitatory synapses is well established, plasticity mechanisms at inhibitory synapses only start to be discovered. Extracellular proteolysis is known to be a key factor in glutamatergic plasticity but nothing is known about its role at GABAergic synapses. We reveal that pharmacological inhibition of MMP3 activity or genetic knockout of the Mmp3 gene abolishes induction of postsynaptic iLTP. Moreover, the application of exogenous active MMP3 mimics major iLTP manifestations: increased mIPSCs amplitude, enlargement of synaptic gephyrin clusters, and a decrease in the diffusion coefficient of synaptic GABAA receptors that favors their entrapment within the synapse. Finally, we found that MMP3 deficient mice show faster spatial learning in Morris water maze and enhanced contextual fear conditioning. We conclude that MMP3 plays a key role in iLTP mechanisms and in the behaviors that presumably in part depend on GABAergic plasticity.


Subject(s)
Hippocampus/physiology , Matrix Metalloproteinase 3/metabolism , Neural Inhibition/physiology , Neuronal Plasticity/physiology , Spatial Learning/physiology , Synapses/physiology , Animals , Female , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Long-Term Potentiation/genetics , Long-Term Potentiation/physiology , Male , Matrix Metalloproteinase 3/genetics , Maze Learning/physiology , Mice, Inbred C57BL , Mice, Knockout , N-Methylaspartate/pharmacology , Neural Inhibition/genetics , Neuronal Plasticity/genetics , Receptors, GABA-A/genetics , Receptors, GABA-A/metabolism , Synapses/genetics
5.
Adv Clin Exp Med ; 28(12): 1717-1722, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31851789

ABSTRACT

Structural and functional synapse reorganization is one of the key issues of learning and memory mechanisms. Specific proteases, called matrix metalloproteinases (MMPs), play a pivotal role during learning-related modification of neural circuits. Different types of MMPs modify the extracellular perisynaptic environment, leading to the plastic changes in the synapses. In recent years, there has been an increasing interest in the role played by matrix metalloproteinase-3 (MMP-3) in various processes occurring in the mammalian brain, both in physiological and pathological conditions. In this review, we discuss a crucial function of MMP-3 in synaptic plasticity, learning, neuronal development, as well as in neuroregeneration. We discuss the involvement of MMP-3 in synaptic long-term potentiation, which is likely to have a profound impact on experience-dependent learning. On the other hand, we also provide examples of deleterious actions of uncontrolled MMP-3 activity on the central nervous system (CNS) and its contribution to Alzheimer's and Parkinson's diseases (AD and PD). Since the molecular mechanisms controlled by MMP-3 have a profound and diverse impact on physiological and pathological brain functioning, their deep understanding may be crucial for the development of more specific methods for the treatment of neuropsychiatric diseases.


Subject(s)
Central Nervous System Diseases/enzymology , Matrix Metalloproteinase 3/physiology , Nerve Regeneration/physiology , Neuronal Plasticity/physiology , Animals , Humans , Long-Term Potentiation , Synaptic Potentials/physiology
6.
Front Cell Neurosci ; 11: 178, 2017.
Article in English | MEDLINE | ID: mdl-28713245

ABSTRACT

The extracellular matrix (ECM) and membrane proteolysis play a key role in structural and functional synaptic plasticity associated with development and learning. A growing body of evidence underscores the multifaceted role of members of the metzincin superfamily, including metalloproteinases (MMPs), A Disintegrin and Metalloproteinases (ADAMs), A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTSs) and astacins in physiological and pathological processes in the central nervous system (CNS). The expression and activity of metzincins are strictly controlled at different levels (e.g., through the regulation of translation, limited activation in the extracellular space, the binding of endogenous inhibitors and interactions with other proteins). Thus, unsurprising is that the dysregulation of proteolytic activity, especially the greater expression and activation of metzincins, is associated with neurodegenerative disorders that are considered synaptopathies, especially Alzheimer's disease (AD). We review current knowledge of the functions of metzincins in the development of AD, mainly the proteolytic processing of amyloid precursor protein, the degradation of amyloid ß (Aß) peptide and several pathways for Aß clearance across brain barriers (i.e., blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB)) that contain specific receptors that mediate the uptake of Aß peptide. Controlling the proteolytic activity of metzincins in Aß-induced pathological changes in AD patients' brains may be a promising therapeutic strategy.

7.
J Neurosci ; 37(5): 1240-1256, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28069922

ABSTRACT

Long-term potentiation (LTP) is widely perceived as a memory substrate and in the hippocampal CA3-CA1 pathway, distinct forms of LTP depend on NMDA receptors (nmdaLTP) or L-type voltage-gated calcium channels (vdccLTP). LTP is also known to be effectively regulated by extracellular proteolysis that is mediated by various enzymes. Herein, we investigated whether in mice hippocampal slices these distinct forms of LTP are specifically regulated by different metalloproteinases (MMPs). We found that MMP-3 inhibition or knock-out impaired late-phase LTP in the CA3-CA1 pathway. Interestingly, late-phase LTP was also decreased by MMP-9 blockade. When both MMP-3 and MMP-9 were inhibited, both early- and late-phase LTP was impaired. Using immunoblotting, in situ zymography, and immunofluorescence, we found that LTP induction was associated with an increase in MMP-3 expression and activity in CA1 stratum radiatum. MMP-3 inhibition and knock-out prevented the induction of vdccLTP, with no effect on nmdaLTP. L-type channel-dependent LTP is known to be impaired by hyaluronic acid digestion. We found that slice treatment with hyaluronidase occluded the effect of MMP-3 blockade on LTP, further confirming a critical role for MMP-3 in this form of LTP. In contrast to the CA3-CA1 pathway, LTP in the mossy fiber-CA3 projection did not depend on MMP-3, indicating the pathway specificity of the actions of MMPs. Overall, our study indicates that the activation of perisynaptic MMP-3 supports L-type channel-dependent LTP in the CA1 region, whereas nmdaLTP depends solely on MMP-9. SIGNIFICANCE STATEMENT: Various types of long-term potentiation (LTP) are correlated with distinct phases of memory formation and retrieval, but the underlying molecular signaling pathways remain poorly understood. Extracellular proteases have emerged as key players in neuroplasticity phenomena. The present study found that L-type calcium channel-dependent LTP in the CA3-CA1 hippocampal projection is critically regulated by the activity of matrix metalloprotease 3 (MMP-3), in contrast to NMDAR-dependent LTP regulated by MMP-9. Moreover, the induction of LTP was associated with an increase in MMP-3 expression and activity. Finally, we found that the digestion of hyaluronan, a principal extracellular matrix component, disrupted the MMP-3-dependent component of LTP. These results indicate that distinct MMPs might act as molecular switches for specific types of LTP.


Subject(s)
Calcium Channels, L-Type/drug effects , Hippocampus/drug effects , Long-Term Potentiation/drug effects , Metalloproteases/physiology , Receptors, N-Methyl-D-Aspartate/drug effects , Animals , CA1 Region, Hippocampal/drug effects , CA3 Region, Hippocampal/drug effects , Calcium Channels, L-Type/physiology , Hyaluronic Acid/pharmacology , Hyaluronoglucosaminidase/pharmacology , In Vitro Techniques , Matrix Metalloproteinase 3/genetics , Matrix Metalloproteinase 3/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Metalloproteases/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mossy Fibers, Hippocampal/drug effects , Neuronal Plasticity/drug effects , Proteolysis , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/physiology
8.
Biochim Biophys Acta Mol Cell Res ; 1864(6): 1071-1087, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27913207

ABSTRACT

STIM1 is an endoplasmic reticulum calcium sensor that is involved in several processes in neurons, including store-operated calcium entry. STIM1 also inhibits voltage-gated calcium channels, such as Cav1.2 and Cav3.1, and is thus considered a multifunctional protein. The aim of this work was to investigate the ways in which transgenic neuronal overexpression of STIM1 in FVB/NJ mice affects animal behavior and the electrophysiological properties of neurons in acute hippocampal slices. We overexpressed STIM1 from the Thy1.2 promoter and verified neuronal expression by quantitative reverse-transcription polymerase chain reaction, Western blot, and immunohistochemistry. Mature primary hippocampal cultures expressed STIM1 but exhibited no changes in calcium homeostasis. Basal synaptic transmission efficiency and short-term plasticity were comparable in slices that were isolated from transgenic mice, similarly as the magnitude of long-term potentiation. However, long-term depression that was induced by the glutamate receptor 1/5 agonist (S)-3,5-dihydroxyphenylglycine was impaired in STIM1 slices. Interestingly, transgenic mice exhibited a decrease in anxiety-like behavior and improvements in contextual learning. In summary, our data indicate that STIM1 overexpression in neurons in the brain perturbs metabotropic glutamate receptor signaling, leading to impairments in long-term depression and alterations in animal behavior. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Subject(s)
Brain/metabolism , Learning , Long-Term Synaptic Depression , Stromal Interaction Molecule 1/metabolism , Animals , Brain/cytology , Female , Mice , Mice, Transgenic , Neurons/metabolism , Pregnancy
9.
Front Cell Neurosci ; 9: 427, 2015.
Article in English | MEDLINE | ID: mdl-26582976

ABSTRACT

Brain is continuously altered in response to experience and environmental changes. One of the underlying mechanisms is synaptic plasticity, which is manifested by modification of synapse structure and function. It is becoming clear that regulated extracellular proteolysis plays a pivotal role in the structural and functional remodeling of synapses during brain development, learning and memory formation. Clearly, plasticity mechanisms may substantially differ between projections. Mossy fiber synapses onto CA3 pyramidal cells display several unique functional features, including pronounced short-term facilitation, a presynaptically expressed long-term potentiation (LTP) that is independent of NMDAR activation, and NMDA-dependent metaplasticity. Moreover, structural plasticity at mossy fiber synapses ranges from the reorganization of projection topology after hippocampus-dependent learning, through intrinsically different dynamic properties of synaptic boutons to pre- and postsynaptic structural changes accompanying LTP induction. Although concomitant functional and structural plasticity in this pathway strongly suggests a role of extracellular proteolysis, its impact only starts to be investigated in this projection. In the present report, we review the role of extracellular proteolysis in various aspects of synaptic plasticity in hippocampal mossy fiber synapses. A growing body of evidence demonstrates that among perisynaptic proteases, tissue plasminogen activator (tPA)/plasmin system, ß-site amyloid precursor protein-cleaving enzyme 1 (BACE1) and metalloproteinases play a crucial role in shaping plastic changes in this projection. We discuss recent advances and emerging hypotheses on the roles of proteases in mechanisms underlying mossy fiber target specific synaptic plasticity and memory formation.

10.
Hippocampus ; 23(6): 529-43, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23418057

ABSTRACT

Mechanisms of synaptic plasticity involve proteolytic activity mediated by a complex system of proteases, including members of metalloproteinase (MMP) family. In particular, MMP-9 is critical in LTP maintenance in the Schaffer collateral-CA1 pathway and in the acquisition of hippocampus-dependent memory. Recent studies from this laboratory revealed that in the mossy fiber-CA3 (MF-CA3) projection, where LTP induction and expression are largely presynaptic, MMPs blockade disrupts LTP maintenance and that LTP induction is associated with increased MMP-9 expression. Here we used acute brain slices from MMP-9 knock-out mice and transgenic rats overexpressing MMP-9 to determine how manipulations in endogenous MMP-9 affect LTP in the MF-CA3 projection. Both types of transgenic models showed a normal basal synaptic transmission and short-term plasticity. Interestingly, the maintenance of LTP induced in slices from knock-out mice and overexpressing rats was nearly abolished. However, in the presence of active MMP-9, a gradual fEPSP autopotentiation was observed and tetanization evoked a marked LTP in knock-out mice. Additionally, in MMP-9-treated slices from wild-type mice, fEPSP autopotentiation also occurred and partially occluded LTP. This indicates that exogenous protease can restore LTP in null mice whereas in the wild-type, MMP-9 excess impairs LTP. We expected that LTP maintenance in transgenic rats could be re-established by a partial MMP blockade but non-saturating concentrations of MMP inhibitor were ineffective. In conclusion, we demonstrate that LTP maintenance in MF-CA3 pathway requires fine-tuned MMP-9 activity and raises the possibility that altered MMP-9 level might be detrimental for cognitive processes as observed in some neuropathologies.


Subject(s)
CA3 Region, Hippocampal/enzymology , Long-Term Potentiation/physiology , Matrix Metalloproteinase 9/biosynthesis , Mossy Fibers, Hippocampal/enzymology , Animals , Enzyme Activation/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neural Pathways/physiology , Organ Culture Techniques , Proteolysis , Rats , Rats, Transgenic , Rats, Wistar
11.
Mol Cell Neurosci ; 50(2): 147-59, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22555058

ABSTRACT

Matrix Metalloproteinases (MMPs) are a family of endopeptidases known to process extracellular proteins. In the last decade, studies carried out mainly on the Schaffer collateral-CA1 hippocampal projection have provided solid evidence that MMPs regulate synaptic plasticity and learning. Recently, our group has shown that MMP blockade disrupts LTP maintenance also in the mossy fiber-CA3 (mf-CA3) projection (Wojtowicz and Mozrzymas, 2010), where LTP mechanisms are profoundly different (NMDAR-independent and presynaptic expression site). However, how plasticity of this pathway correlates with activity and expression of MMPs remains unknown. Interestingly, several potential MMP substrates (especially of gelatinases) are localized intracellularly but little is known about MMP activity in this compartment. In the present study we have asked whether LTP is associated with the expression and activity of gelatinases in apparent intra- and extracellular compartments along mf-CA3 projection. In situ zymography showed that LTP induction was associated with increased gelatinases activity in the cytoplasm of the hilar and CA3 neurons. Using gelatin zymography, immunohistochemistry and immunofluorescent staining we found that this effect was due to de novo synthesis and activation of MMP-9 which, 2-3h after LTP induction was particularly evident in the cytoplasm. In contrast, MMP-2 was localized preferentially in the nuclei and was not affected by LTP induction. In conclusion, we demonstrate that LTP induction in the mf-CA3 pathway correlates with increased expression and activity of MMP-9 and provide the first evidence that this increase is particularly evident in the neuronal cytoplasm and nucleus.


Subject(s)
CA3 Region, Hippocampal/physiology , Long-Term Potentiation/physiology , Matrix Metalloproteinase 9/biosynthesis , Matrix Metalloproteinases/metabolism , Mossy Fibers, Hippocampal/physiology , Animals , CA3 Region, Hippocampal/enzymology , Excitatory Postsynaptic Potentials/physiology , Matrix Metalloproteinase 9/metabolism , Mossy Fibers, Hippocampal/enzymology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...