Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 800284, 2021.
Article in English | MEDLINE | ID: mdl-34975991

ABSTRACT

Climate changes leading to higher summer temperatures can adversely affect cool season crops like spring barley. In the Upper Midwest region of the United States, one option for escaping this stress factor is to plant winter or facultative type cultivars in the autumn and then harvest in early summer before the onset of high-temperature stress. However, the major challenge in breeding such cultivars is incorporating sufficient winter hardiness to survive the extremely low temperatures that commonly occur in this production region. To broaden the genetic base for winter hardiness in the University of Minnesota breeding program, 2,214 accessions from the N. I. Vavilov Institute of Plant Industry (VIR) were evaluated for winter survival (WS) in St. Paul, Minnesota. From this field trial, 267 (>12%) accessions survived [designated as the VIR-low-temperature tolerant (LTT) panel] and were subsequently evaluated for WS across six northern and central Great Plains states. The VIR-LTT panel was genotyped with the Illumina 9K SNP chip, and then a genome-wide association study was performed on seven WS datasets. Twelve significant associations for WS were identified, including the previously reported frost resistance gene FR-H2 as well as several novel ones. Multi-allelic haplotype analysis revealed the most favorable alleles for WS in the VIR-LTT panel as well as another recently studied panel (CAP-LTT). Seventy-eight accessions from the VIR-LTT panel exhibited a high and consistent level of WS and select ones are being used in winter barley breeding programs in the United States and in a multiparent population.

2.
Front Plant Sci ; 11: 779, 2020.
Article in English | MEDLINE | ID: mdl-32655595

ABSTRACT

Seeding rate in hard red spring wheat (HRSW; Triticum aestivum L.) production impacts input cost and grain yield. Predicting the optimal seeding rate (OSR) for HRSW cultivars can eliminate the need for costly seeding rate research and growers using OSRs can maximize yield and seeding efficiency. Data were compiled from seeding rate studies conducted in 32 environments in the Northern Plains United States to determine the OSR of HRSW cultivars grown in diverse environments. Twelve cultivars with diverse genetic and phenotypic characteristics were evaluated at five seeding rates in 2013-2015, and nine cultivars were evaluated in 2017-2018. OSR varied among cultivar within environments. Cultivar x environment interactions were explored with the objective of developing a decision support system (DSS) to aid growers in determining the OSR for the cultivar they select, and for the environment in which it is sown. A 10-fold repeated cross-validation of the seeding rate data was used to fit 10 decision tree models and the most robust model was selected based on minimizing the value for model variance. The final decision tree model for predicting OSR of HRSW cultivars in diverse environments was considered the most reliable as bias was minimized by pruning methods, and model variance was acceptable for OSR predictions (RMSE = 1.24). Findings from this model were used to develop the grower DSS for determining OSR dependent on cultivar straw strength (as a measure of lodging resistance), tillering capacity, and yield of the environment. Recommendations for OSR ranged from 3.1 to 4.5 million seeds ha-1. Growers can benefit from using this DSS by sowing at OSR relative to their average yields; especially when seeding new HRSW cultivars.

3.
Front Plant Sci ; 11: 828, 2020.
Article in English | MEDLINE | ID: mdl-32612624

ABSTRACT

The Wheat Initiative (WI) and the WI Expert Working Group (EWG) for Agronomy (www.wheatinitiative.org) were formed with a collective goal to "coordinate global wheat research efforts to increase wheat production, quality, and sustainability to advance food security and safety under changing climate conditions." The Agronomy EWG is responsive to the WI's research need, "A knowledge exchange strategy to ensure uptake of innovations on farm and to update scientists on changing field realities." The Agronomy EWG aims to consolidate global expertise for agronomy with a focus on wheat production systems. The overarching approach is to develop and adopt a systems-agronomy framework relevant to any wheat production system. It first establishes the scale of current yield gaps, identifies defensible benchmarks, and takes a holistic approach to understand and overcome exploitable yield gaps to complement genetic increases in potential yield. New opportunities to increase productivity will be sought by exploiting future Genotype × Environment × Management synergies in different wheat systems. To identify research gaps and opportunities for collaboration among different wheat producing regions, the EWG compiled a comprehensive database of currently funded wheat agronomy research (n = 782) in countries representing a large proportion of the wheat grown in the world. The yield gap analysis and research database positions the EWG to influence priorities for wheat agronomy research in member countries that would facilitate collaborations, minimize duplication, and maximize the global impact on wheat production systems. This paper outlines a vision for a global WI agronomic research strategy and discusses activities to date. The focus of the WI-EWG is to transform the agronomic research approach in wheat cropping systems, which will be applicable to other crop species.

4.
Toxins (Basel) ; 10(9)2018 09 11.
Article in English | MEDLINE | ID: mdl-30208600

ABSTRACT

This project was initiated with the goal of investigating the malt quality of winter rye cultivars and hybrids grown in the United States in 2014 and 2015, but high levels of deoxynivalenol (DON) were subsequently found in many of the malt samples. DON levels in 75% of the investigated rye samples (n = 117) were actually below 1.0 mg/kg, as quantified by a gas chromatography combined with electron capture detector (GC-ECD). However, 83% of the samples had DON in excess of 1.0 mg/kg following malting, and the average DON level in malted rye was 10.6 mg/kg. In addition, relatively high levels of 3-acetate DON (3-ADON), 15-acetate DON (15-ADON), nivalenol (NIV), and DON-3-glucoside (D3G) were observed in some rye malts. Our results show that rye grain DON is likely a poor predicator of type B trichothecenes in malt in practice, because high levels of malt DON, 15-ADONm and D3G were produced, even when the rye samples with DON levels below 0.50 mg/kg were processed. Fusarium Tri5 DNA content in rye was highly associated with malt DON levels (r = 0.83) in a small subset of samples (n = 55). The impact of Fusarium infection on malt quality was demonstrated by the significant correlations between malt DON levels and wort viscosity, ß-glucan content, wort color, wort p-coumaric acid content, and total phenolic content. Additional correlations of rye Fusarium Tri5 DNA contents with malt diastatic power (DP), wort free amino nitrogen (FAN) content, and arabinoxylan content were observed.


Subject(s)
Food Contamination/analysis , Fusarium , Secale/chemistry , Trichothecenes/analysis , Food Handling , Fusarium/growth & development , Plant Diseases , Secale/microbiology
5.
Theor Appl Genet ; 131(3): 721-733, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29222636

ABSTRACT

KEY MESSAGE: Oat crown rust is one of the most damaging diseases of oat. We identified a new source of resistance and developed KASP and TaqMan markers for selection in breeding programs. A new highly effective resistance to oat crown rust (Puccinia coronata f. sp. avenae) was identified in the diploid oat Avena strigosa PI 258731 and introgressed into hexaploid cultivated oat. Young plants with this resistance show moderate susceptibility, whereas older plant tissues and adult plants are resistant with no virulent isolates encountered in over 8 years of testing. Resistance was incorporated into hexaploid oat by embryo rescue, colchicine chromosome doubling followed by backcrosses with a hexaploid parent, and selection for stable transmission of resistance. To mitigate flag leaf and panicle chlorosis/necrosis associated with the resistance, crosses were made with derived resistant lines to breeding lines of divergent parentage followed by selection. Subsequently, two F2 sister lines, termed MNBT1020-1 and MNBT1021-1, were identified in which the chlorosis/necrosis was reduced. These two lines performed well in replicated multi-location state trials in 2015 and 2016 out-yielding all cultivar entries. Segregating F2:3 plants resulting from crosses of MNBT lines to susceptible parents were genotyped with the oat 6K SNP array, and SNP loci with close linkage to the resistance were identified. KASP assays generated from linked SNPs showed accurate discrimination of the resistance in derivatives of the resistant MNBT lines crossed to susceptible breeding lines. A TaqMan marker was developed and correctly identified homozygous resistance in over 95% of 379 F4 plants when rust was scored in F4:5 plants in the field. Thus, a novel highly effective resistance and associated molecular markers are available for use in breeding, genetic analysis, and functional studies.


Subject(s)
Avena/genetics , Disease Resistance/genetics , Genetic Markers , Plant Diseases/genetics , Avena/microbiology , Basidiomycota , Crosses, Genetic , Genetic Linkage , Genotype , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Polyploidy
SELECTION OF CITATIONS
SEARCH DETAIL
...