Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Radiat Oncol ; 11: 46, 2016 Mar 22.
Article in English | MEDLINE | ID: mdl-27000180

ABSTRACT

BACKGROUND: To implement total body irradiation (TBI) using volumetric modulated arc therapy (VMAT). We applied the Varian RapidArc™ software to calculate and optimize the dose distribution. Emphasis was placed on applying a homogenous dose to the PTV and on reducing the dose to the lungs. METHODS: From July 2013 to July 2014 seven patients with leukaemia were planned and treated with a VMAT-based TBI-technique with photon energy of 6 MV. The overall planning target volume (PTV), comprising the whole body, had to be split into 8 segments with a subsequent multi-isocentric planning. In a first step a dose optimization of each single segment was performed. In a second step all these elements were calculated in one overall dose-plan, considering particular constraints and weighting factors, to achieve the final total body dose distribution. The quality assurance comprised the verification of the irradiation plans via ArcCheck™ (Sun Nuclear), followed by in vivo dosimetry via dosimeters (MOSFETs) on the patient. RESULTS: The time requirements for treatment planning were high: contouring took 5-6 h, optimization and dose calculation 25-30 h and quality assurance 6-8 h. The couch-time per fraction was 2 h on day one, decreasing to around 1.5 h for the following fractions, including patient information, time for arc positioning, patient positioning verification, mounting of the MOSFETs and irradiation. The mean lung dose was decreased to at least 80 % of the planned total body dose and in the central parts to 50 %. In two cases we additionally pursued a dose reduction of 30 to 50 % in a pre-irradiated brain and in renal insufficiency. All high dose areas were outside the lungs and other OARs. The planned dose was in line with the measured dose via MOSFETs: in the axilla the mean difference between calculated and measured dose was 3.6 % (range 1.1-6.8 %), and for the wrist/hip-inguinal region it was 4.3 % (range 1.1-8.1 %). CONCLUSION: TBI with VMAT provides the benefit of satisfactory dose distribution within the PTV, while selectively reducing the dose to the lungs and, if necessary, in other organs. Planning time, however, is extensive.


Subject(s)
Lung Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy, Intensity-Modulated/methods , Whole-Body Irradiation/methods , Adult , Humans , Leukemia/radiotherapy , Lymphoma, T-Cell/therapy , Middle Aged , Organs at Risk/radiation effects , Patient Positioning , Quality Assurance, Health Care , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Software , Stem Cell Transplantation/methods , Time Factors , Tomography, X-Ray Computed/methods , Young Adult
2.
Appl Opt ; 53(15): 3183-90, 2014 May 20.
Article in English | MEDLINE | ID: mdl-24922202

ABSTRACT

Polarization-sensitive (PS) terahertz (THz) technology can be used for investigating anisotropic materials that are opaque for visible light. A full characterization of an anisotropic material requires the extraction of the birefringence as well as the orientation of the optical axis from the measurement data. We present an approach based on THz time-domain spectroscopy (TDS) that exploits the spectral content of the THz signal for determining these two parameters from only two measurements. In contrast to an earlier approach with a more sophisticated PS-THz system and quasi-circularly polarized THz radiation, now a simple standard THz-TDS system can be employed. After a description of the mathematical model for data analysis we demonstrate the applicability of our method for a lithium niobate crystal and furthermore for a glass-fiber reinforced polymer sample, for which the orientation of the optical axis and birefringence are obtained in a spatially resolved way, showing the potential of the method also for PS-THz imaging. As no specialized setup or components are required, our approach can be easily and extensively applied for the analysis of anisotropic samples at THz frequencies.

3.
J Phys Chem C Nanomater Interfaces ; 117(42): 22010-22016, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24175008

ABSTRACT

Ellipsometric measurements in a wide spectral range (from 0.05 to 6.5 eV) have been carried out on the organic semiconducting polymer, poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene-vinylene] (MDMO-PPV), in both undoped and doped states. The real and imaginary parts of the dielectric function and the refractive index are determined accurately, provided that the layer thickness is measured independently. After doping, the optical properties show the presence of new peaks, which could be well-resolved by spectroscopic ellipsometry. Also for the doped material, the complex refractive index, with respect to the dielectric function, has been determined. The broadening of the optical transitions is due to the delocalization of polarons at higher doping level. The detailed information about the dielectric function as well as refractive index function obtained by spectroscopic ellipsometry allows not only qualitative but also quantitative description of the optical properties of the undoped/doped polymer. For the direct characterization of the optical properties of MDMO-PPV, ellipsometry turns out to be advantageous compared to conventional reflection and transmission measurements.

4.
Biomed Opt Express ; 3(11): 2842-50, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-23162722

ABSTRACT

We apply terahertz (THz) time-domain spectroscopy for monitoring the curing process of three different light-curing dental composites. Exact knowledge of the sample thickness is required for a precise determination of the THz dielectric parameters, as the materials exhibit shrinkage when they are cured. We find very small but significant changes of the THz refractive index and absorption coefficient during stepwise light exposure. The changes in the refractive index are correlated with changes in the density of the materials. Furthermore, the refractive index and the sample thickness are found to give the most reliable result for monitoring the curing process of the dental composites.

5.
Opt Express ; 20(21): 23025-35, 2012 Oct 08.
Article in English | MEDLINE | ID: mdl-23188266

ABSTRACT

We present a practicable way to take advantage of the spectral information contained in a broadband terahertz pulse for the determination of birefringence and orientation of the optical axis in a glass fiber reinforced polymer with a single measurement. Our setup employs circularly polarized terahertz waves and a polarization-sensitive detector to measure both components of the electromagnetic field simultaneously. The anisotropic optical parameters are obtained from an analysis of the phase and frequency resolved components of the terahertz field. This method shows a high tolerance against the skew of the detection axes and is also independent of a reference measurement.


Subject(s)
Refractometry/instrumentation , Terahertz Imaging/instrumentation , Birefringence , Equipment Design , Equipment Failure Analysis
6.
Opt Express ; 19(23): 23042-53, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-22109184

ABSTRACT

In this work, we develop a pulsed terahertz imaging system in reflection geometry, where due to scanning of the terahertz beam neither the sample nor the emitter and detector have to be moved. We use a two mirror galvanoscanner for deflecting the beam, in combination with a single rotationally symmetric focusing lens. In order to efficiently image planar structures, we develop an advanced scanning routine that resolves all bending effects of the imaging plane already during measurement. Thus, the measurement time is reduced, and efficient imaging of surfaces and interfaces becomes possible. We demonstrate the potential of this method in particular for a plastic-metal composite sample, for which non-destructive evaluation of an interface is performed.

7.
Appl Opt ; 50(15): 2256-62, 2011 May 20.
Article in English | MEDLINE | ID: mdl-21614120

ABSTRACT

We present a simple and versatile approach for fabricating terahertz lenses based on compression molding of micropowder polymer materials in a tabletop hydraulic press. To demonstrate the feasibility of this approach, a biconvex lens shape is calculated using a ray-tracing algorithm and lenses based on two different micropowders are fabricated. As the powder materials have different refractive indices, the resulting lenses share the same geometric shape but differ in their respective focal length. The focusing properties of the lenses are evaluated by transversal and sagittal beam profile measurements in a fiber-coupled terahertz time-domain spectroscopy system, confirming the excellent imaging qualities of the compression molded lenses.

8.
Appl Opt ; 48(11): 2037-44, 2009 Apr 10.
Article in English | MEDLINE | ID: mdl-19363540

ABSTRACT

A terahertz time-domain spectrometer is employed to study different birefringent samples. We develop a method based on the temporal waveform and the impulse response of a sample to map the anisotropy of their inner structure. To validate our algorithm, we study the polarization-affecting structure of various classes of materials such as crystals, plastics, and natural products. Among all samples we observe the largest birefringence for a rutile crystal with Deltan=3.3 at 1 THz.


Subject(s)
Materials Testing/instrumentation , Materials Testing/methods , Terahertz Spectroscopy , Algorithms , Anisotropy , Birefringence , Crystallography/instrumentation , Models, Theoretical
9.
Opt Express ; 13(3): 1015-24, 2005 Feb 07.
Article in English | MEDLINE | ID: mdl-19494965

ABSTRACT

Optical coherence tomography (OCT) is an emerging technique for cross-sectional imaging, originally developed for biological structures. When OCT is employed for material investigation, high-resolution and short measurement times are required, and for many applications, only transversal (en-face) scans yield substantial information which cannot be obtained from cross-sectional images oriented perpendicularly to the sample surface alone. In this work, we combine transversal with ultra-high resolution OCT: a broadband femto-second laser is used as a light source in combination with acousto-optic modulators for heterodyne signal generation and detection. With our setup we are able to scan areas as large as 3 x 3 mm2 with a sensitivity of 100 dB, representing areas 100 times larger compared to other high-resolution en-face OCT systems (full field). We demonstrate the benefits of en-face scanning for different applications in materials investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...