Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Res ; 86(5): 608-615, 2019 11.
Article in English | MEDLINE | ID: mdl-31349362

ABSTRACT

BACKGROUND: Neonatal sepsis is a leading cause of perinatal morbidity and mortality. In comparison to adults, neonates exhibit a higher susceptibility to infections. Myeloid-derived suppressor cells (MDSCs) are myeloid cells with suppressive activity on other immune cells accumulating during foetal life and controlling inflammation in neonates. Most studies investigating the mechanisms for MDSC-mediated immune suppression have been focused on T-cells. Thus far, little is known about the role of MDSC for monocyte function. METHODS: The impact of human cord blood MDSCs (CB-MDSCs) on monocytes was investigated in an in vitro model. CB-MDSCs were co-cultured with peripheral blood mononuclear cells and monocytes were analysed for expression of surface markers, T cell stimulatory and phagocytic capacity, as well as the production of intracellular cytokines by flow cytometry. RESULTS: CB-MDSCs increased the expression of co-inhibitory molecules and decreased the expression of major histocompatibility complex class II molecules on monocytes, leading to an impaired T-cell stimulatory capacity. Upon bacterial stimulation, expression of phagocytosis receptors, phagocytosis rates and production of tumor necrosis factor-α by monocytes was diminished by CB-MDSCs. CONCLUSION: We show that CB-MDSCs profoundly modulate monocyte functions, thereby indirectly impairing T-cell activation. Further research is needed to figure out if MDSCs could be a therapeutic target for inflammatory diseases in neonates like neonatal sepsis.


Subject(s)
Escherichia coli/immunology , Fetal Blood/cytology , Granulocytes/immunology , Myeloid-Derived Suppressor Cells/immunology , T-Lymphocytes/immunology , Cell Proliferation , Coculture Techniques , Humans , Infant, Newborn
2.
Bioresour Technol ; 247: 347-356, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28954247

ABSTRACT

This study aimed to uncover microbial dynamics and transcriptional adaptations during mesophilic AD of maize silage and slurry. While one digester performed under optimal conditions, the investigations also evaluated the microbiome during a temperature drop mediated process failure accompanied by acidification and how it contributed to a process recovery. Composition and pathway activities were analyzed by whole genome shotgun (WGS) and metatranscriptome sequencing, respectively. A biodiversity of 112 species was observed with noticeable shifts over process time. Although four distinct groups of microbes could be identified with a correlating versatility according to substrate and to process disturbance, also tremendous effects on gene expression were monitored especially of the archaeal methane metabolism. Particularly, the expression of acetogenotrophic methanogenesis related genes was identified to be relevant for process regeneration.


Subject(s)
Bioreactors , Methane , Acclimatization , Anaerobiosis , Archaea , Biofuels , Microbiota
SELECTION OF CITATIONS
SEARCH DETAIL
...