Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Article in English | MEDLINE | ID: mdl-39000230

ABSTRACT

In insect olfaction, sensitization refers to the amplification of a weak olfactory signal when the stimulus is repeated within a specific time window. In the vinegar fly, Drosophila melanogaster, this occurs already at the periphery, at the level of olfactory sensory neurons (OSNs) located in the antenna. In our study, we investigate whether sensitization is a widespread property in a set of seven types of OSNs, as well as the mechanisms involved. First, we characterize and compare the differences in spontaneous activity, response velocity and response dynamics, among the selected OSN types. These express different receptors with distinct tuning properties and behavioral relevance. Second, we show that sensitization is not a general property. Among our selected OSN types, it occurs in those responding to more general food odors, while OSNs involved in very specific detection of highly specific ecological cues like pheromones and warning signals show no sensitization. Moreover, we show that mitochondria play an active role in sensitization by contributing to the increase in intracellular Ca2+ upon weak receptor activation. Thus, by using a combination of single sensillum recordings (SSRs), calcium imaging and pharmacology, we widen the understanding of how the olfactory signal is processed at the periphery.


Subject(s)
Drosophila melanogaster , Olfactory Receptor Neurons , Smell , Animals , Olfactory Receptor Neurons/physiology , Olfactory Receptor Neurons/metabolism , Drosophila melanogaster/physiology , Smell/physiology , Odorants , Calcium/metabolism , Neuronal Plasticity/physiology , Receptors, Odorant/metabolism , Mitochondria/metabolism
2.
Talanta ; 243: 123332, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35276500

ABSTRACT

Methionine oxidation is a reversible post-translational protein modification, affecting protein function, and implicated in aging and degenerative diseases. The detection of accumulating methionine oxidation in living cells or organisms, however, has not been achieved. Here we introduce a genetically encoded probe for methionine oxidation (GEPMO), based on the super-folder green fluorescent protein (sfGFP), as a specific, versatile, and integrating sensor for methionine oxidation. Placed at amino-acid position 147 in an otherwise methionine-less sfGFP, the oxidation of this specific methionine to methionine sulfoxide results in a ratiometric fluorescence change when excited with ∼400 and ∼470 nm light. The strength and homogeneity of the sensor expression is suited for live-cell imaging as well as fluorescence-activated cell sorting (FACS) experiments using standard laser wavelengths (405/488 nm). Expressed in mammalian cells and also in S. cerevisiae, the sensor protein faithfully reports on the status of methionine oxidation in an integrating manner. Variants targeted to membranes and the mitochondria provide subcellular resolution of methionine oxidation, e.g. reporting on site-specific oxidation by illumination of endogenous protoporphyrin IX.


Subject(s)
Methionine , Saccharomyces cerevisiae , Animals , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mammals/metabolism , Methionine/metabolism , Mitochondria/metabolism , Oxidation-Reduction , Saccharomyces cerevisiae/metabolism
3.
Insects ; 13(3)2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35323568

ABSTRACT

Insects detect volatile chemosignals with olfactory sensory neurons (OSNs) that express olfactory receptors. Among them, the most sensitive receptors are the odorant receptors (ORs), which form cation channels passing Ca2+. OSNs expressing different groups of ORs show varying optimal odor concentration ranges according to environmental needs. Certain types of OSNs, usually attuned to high odor concentrations, allow for the detection of even low signals through the process of sensitization. By increasing the sensitivity of OSNs upon repetitive subthreshold odor stimulation, Drosophila melanogaster can detect even faint and turbulent odor traces during flight. While the influx of extracellular Ca2+ has been previously shown to be a cue for sensitization, our study investigates the importance of intracellular Ca2+ management. Using an open antenna preparation that allows observation and pharmacological manipulation of OSNs, we performed Ca2+ imaging to determine the role of Ca2+ storage in mitochondria. By disturbing the mitochondrial resting potential and induction of the mitochondrial permeability transition pore (mPTP), we show that effective storage of Ca2+ in the mitochondria is vital for sensitization to occur, and release of Ca2+ from the mitochondria to the cytoplasm promptly abolishes sensitization. Our study shows the importance of cellular Ca2+ management for sensitization in an effort to better understand the underlying mechanics of OSN modulation.

4.
Pflugers Arch ; 472(5): 551-560, 2020 05.
Article in English | MEDLINE | ID: mdl-32388729

ABSTRACT

N-type inactivation of voltage-gated K+ channels is conferred by the N-terminal "ball" domains of select pore-forming α subunits or of auxiliary ß subunits, and influences electrical cellular excitability. Here, we show that hemin impairs inactivation of K+ channels formed by Kv3.4 α subunits as well as that induced by the subunits Kvß1.1, Kvß1.2, and Kvß3.1 when coexpressed with α subunits of the Kv1 subfamily. In Kvß1.1, hemin interacts with cysteine and histidine residues in the N terminus (C7 and H10) with high affinity (EC50 100 nM). Similarly, rapid inactivation of Kv4.2 channels induced by the dipeptidyl peptidase-like protein DPP6a is also sensitive to hemin, and the DPP6a mutation C13S eliminates this dependence. The results suggest a common mechanism for a dynamic regulation of Kv channel inactivation by heme/hemin in N-terminal ball domains of Kv α and auxiliary ß subunits. Free intracellular heme therefore has the potential to regulate cellular excitability via modulation of Kv channel inactivation.


Subject(s)
Hemin/metabolism , Ion Channel Gating , Potassium Channels, Voltage-Gated/metabolism , Animals , Binding Sites , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , HEK293 Cells , Humans , Potassium Channels, Voltage-Gated/chemistry , Protein Binding , Rats , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...