Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
G3 (Bethesda) ; 11(7)2021 07 14.
Article in English | MEDLINE | ID: mdl-33974063

ABSTRACT

Actin and myosin mediate the epidermal cell contractions that elongate the Caenorhabditis elegans embryo from an ovoid to a tubular-shaped worm. Contraction occurs mainly in the lateral epidermal cells, while the dorsoventral epidermis plays a more passive role. Two parallel pathways trigger actinomyosin contraction, one mediated by LET-502/Rho kinase and the other by PAK-1/p21 activated kinase. A number of genes mediating morphogenesis have been shown to be sufficient when expressed either laterally or dorsoventrally. Additional genes show either lateral or dorsoventral phenotypes. This led us to a model where contractile genes have discrete functions in one or the other cell type. We tested this by examining several genes for either lateral or dorsoventral sufficiency. LET-502 expression in the lateral cells was sufficient to drive elongation. MEL-11/Myosin phosphatase, which antagonizes contraction, and PAK-1 were expected to function dorsoventrally, but we could not detect tissue-specific sufficiency. Double mutants of lethal alleles predicted to decrease lateral contraction with those thought to increase dorsoventral force were previously shown to be viable. We hypothesized that these mutant combinations shifted the contractile force from the lateral to the dorsoventral cells and so the embryos would elongate with less lateral cell contraction. This was tested by examining 10 single and double mutant strains. In most cases, elongation proceeded without a noticeable alteration in lateral contraction. We suggest that many embryonic elongation genes likely act in both lateral and dorsoventral cells, even though they may have their primary focus in one or the other cell type.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Protein Serine-Threonine Kinases , Morphogenesis/genetics , Epidermis/metabolism , rho-Associated Kinases/metabolism
2.
G3 (Bethesda) ; 8(5): 1425-1437, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29593072

ABSTRACT

The ELT-2 GATA factor normally functions in differentiation of the C. elegans endoderm, downstream of endoderm specification. We have previously shown that, if ELT-2 is expressed sufficiently early, it is also able to specify the endoderm and to replace all other members of the core GATA-factor transcriptional cascade (END-1, END-3, ELT-7). However, such rescue requires multiple copies (and presumably overexpression) of the end-1p::elt-2 cDNA transgene; a single copy of the transgene does not rescue. We have made this observation the basis of a genetic screen to search for genetic modifiers that allow a single copy of the end-1p::elt-2 cDNA transgene to rescue the lethality of the end-1 end-3 double mutant. We performed this screen on a strain that has a single copy insertion of the transgene in an end-1 end-3 background. These animals are kept alive by virtue of an extrachromosomal array containing multiple copies of the rescuing transgene; the extrachromosomal array also contains a toxin under heat shock control to counterselect for mutagenized survivors that have been able to lose the rescuing array. A screen of ∼14,000 mutagenized haploid genomes produced 17 independent surviving strains. Whole genome sequencing was performed to identify genes that incurred independent mutations in more than one surviving strain. The C. elegans gene tasp-1 was mutated in four independent strains. tasp-1 encodes the C. elegans homolog of Taspase, a threonine-aspartic acid protease that has been found, in both mammals and insects, to cleave several proteins involved in transcription, in particular MLL1/trithorax and TFIIA. A second gene, pqn-82, was mutated in two independent strains and encodes a glutamine-asparagine rich protein. tasp-1 and pqn-82 were verified as loss-of-function modifiers of the end-1p::elt-2 transgene by RNAi and by CRISPR/Cas9-induced mutations. In both cases, gene loss leads to modest increases in the level of ELT-2 protein in the early endoderm although ELT-2 levels do not strictly correlate with rescue. We suggest that tasp-1 and pqn-82 represent a class of genes acting in the early embryo to modulate levels of critical transcription factors or to modulate the responsiveness of critical target genes. The screen's design, rescuing lethality with an extrachromosomal transgene followed by counterselection, has a background survival rate of <10-4 without mutagenesis and should be readily adapted to the general problem of identifying suppressors of C. elegans lethal mutations.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Cell Differentiation , Endoderm/metabolism , GATA Transcription Factors/genetics , Genes, Modifier , Intestines/cytology , Mutation/genetics , Amino Acid Sequence , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Cell Differentiation/genetics , Embryo, Nonmammalian/metabolism , GATA Transcription Factors/chemistry , GATA Transcription Factors/metabolism , Genetic Testing , Genotype , Reproducibility of Results , Survival Analysis , Whole Genome Sequencing , Zygote/metabolism
3.
Worm ; 5(3): e1198869, 2016.
Article in English | MEDLINE | ID: mdl-27695655

ABSTRACT

The ELT-2 GATA factor is the predominant transcription factor regulating gene expression in the C. elegans intestine, following endoderm specification. We comment on our previous study (Wiesenfahrt et al., 2016) that investigated how the elt-2 gene is controlled by END-1, END-3 and ELT-7, the 3 endoderm specific GATA factors that lie upstream in the regulatory hierarchy. We also discuss the unexpected result that ELT-2, if expressed sufficiently early and at sufficiently high levels, can specify the C. elegans endoderm, replacing the normal functions of END-1 and END-3.

4.
Development ; 143(3): 483-91, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26700680

ABSTRACT

ELT-2 is the major regulator of genes involved in differentiation, maintenance and function of C. elegans intestine from the early embryo to mature adult. elt-2 responds to overexpression of the GATA transcription factors END-1 and END-3, which specify the intestine, as well as to overexpression of the two GATA factors that are normally involved in intestinal differentiation, ELT-7 and ELT-2 itself. Little is known about the molecular mechanisms underlying these interactions, how ELT-2 levels are maintained throughout development or how such systems respond to developmental perturbations. Here, we analyse elt-2 gene regulation through transgenic reporter assays, ELT-2 ChIP and characterisation of in vitro DNA-protein interactions. Our results indicate that elt-2 is controlled by three discrete regulatory regions conserved between C. elegans and C. briggsae that span >4 kb of 5' flanking sequence. These regions are superficially interchangeable but have quantitatively different enhancer properties, and their combined activities indicate inter-region synergies. Their regulatory activity is mediated by a small number of conserved TGATAA sites that are largely interchangeable and interact with different endodermal GATA factors with only modest differences in affinity. The redundant molecular mechanism that forms the elt-2 regulatory network is robust and flexible, as loss of end-3 halves ELT-2 levels in the early embryo but levels fully recover by the time of hatching. When ELT-2 is expressed under the control of end-1 regulatory elements, in addition to its own endogenous promoter, it can replace the complete set of endoderm-specific GATA factors: END-1, END-3, ELT-7 and (the probably non-functional) ELT-4. Thus, in addition to controlling gene expression during differentiation, ELT-2 is capable of specifying the entire C. elegans endoderm.


Subject(s)
Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Endoderm/embryology , Endoderm/metabolism , GATA Transcription Factors/genetics , Gene Expression Regulation, Developmental , 5' Flanking Region/genetics , Animals , Base Sequence , Caenorhabditis elegans Proteins/metabolism , Cell Differentiation/genetics , Chromatin Immunoprecipitation , Conserved Sequence , DNA/metabolism , GATA Transcription Factors/metabolism , Gene Regulatory Networks , Intestinal Mucosa/metabolism , Molecular Sequence Data , Promoter Regions, Genetic , Protein Binding/genetics , Transcription Factors/metabolism , Transcription, Genetic
5.
Development ; 139(10): 1851-62, 2012 May.
Article in English | MEDLINE | ID: mdl-22510987

ABSTRACT

The nematode Caenorhabditis elegans is an excellent model system in which to study in vivo organization and function of the intermediate filament (IF) system for epithelial development and function. Using a transgenic ifb-2::cfp reporter strain, a mutagenesis screen was performed to identify mutants with aberrant expression patterns of the IF protein IFB-2, which is expressed in a dense network at the subapical endotube just below the microvillar brush border of intestinal cells. Two of the isolated alleles (kc2 and kc3) were mapped to the same gene, which we refer to as ifo-1 (intestinal filament organizer). The encoded polypeptide colocalizes with IF proteins and F-actin in the intestine. The apical localization of IFO-1 does not rely on IFB-2 but is dependent on LET-413, a basolateral protein involved in apical junction assembly and maintenance of cell polarity. In mutant worms, IFB-2 and IFC-2 are mislocalized in cytoplasmic granules and accumulate in large aggregates at the C. elegans apical junction (CeAJ) in a DLG-1-dependent fashion. Electron microscopy reveals loss of the prominent endotube and disordered but still intact microvilli. Semiquantitative fluorescence microscopy revealed a significant decrease of F-actin, suggesting a general role of IFO-1 in cytoskeletal organization. Furthermore, downregulation of the cytoskeletal organizer ERM-1 and the adherens junction component DLG-1, each of which leads to F-actin reduction on its own, induces a novel synthetic phenotype in ifo-1 mutants resulting in disruption of the lumen. We conclude that IFO-1 is a multipurpose linker between different cytoskeletal components of the C. elegans intestinal terminal web and contributes to proper epithelial tube formation.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/metabolism , Cytoskeletal Proteins/metabolism , Guanylate Kinases/metabolism , Actins/genetics , Actins/metabolism , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Cytoskeletal Proteins/genetics , Cytoskeleton/metabolism , Guanylate Kinases/genetics , Intermediate Filaments/genetics , Intermediate Filaments/metabolism
6.
Cell Motil Cytoskeleton ; 66(10): 852-64, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19437512

ABSTRACT

Intermediate filaments (IFs) make up one of the three major fibrous cytoskeletal systems in metazoans. Numerous IF polypeptides are synthesized in cell type-specific combinations suggesting specialized functions. The review concentrates on IFs in the model organism Caenorhabditis elegans which carries great promise to elucidate the still unresolved mechanisms of IF assembly into complex networks and to determine IF function in a living organism. In contrast to Drosophila melanogaster, which lacks cytoplasmic IFs altogether, the nematode genome contains 11 genes coding for cytoplasmic IFs and only a single gene for a nuclear lamin. Its cytoplasmic IFs are expressed in developmentally and spatially defined patterns. As an example we present the case of the intestinal IFs which are abundant in the mechanically resilient endotube, a prominent feature of the C. elegans intestinal terminal web region. This IF-rich structure brings together all three cytoskeletal filaments that are integrated into a coherent entity by the C. elegans apical junction (CeAJ) thereby completely surrounding and stabilizing the intestinal lumen with its characteristic brush border. Concepts on the developmental establishment of the endotube in relation to polarization and its function for maintenance of epithelial integrity are discussed. Furthermore, possible connections of the cytoplasmic cytoskeleton to the nuclear lamin IFs and the importance of these links for nuclear positioning are summarized.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Intermediate Filament Proteins/metabolism , Intermediate Filaments/metabolism , Animals , Caenorhabditis elegans , Cytoskeleton/metabolism , Embryo, Nonmammalian/metabolism , Intestinal Mucosa/metabolism , Intestines/cytology , Microscopy, Electron , Microscopy, Fluorescence
7.
Dev Biol ; 327(1): 34-47, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19109941

ABSTRACT

The let-413/scribble and dlg-1/discs large genes are key regulators of epithelial cell polarity in C. elegans and other systems but the mechanism how they organize a circumferential junctional belt around the apex of epithelial cells is not well understood. We report here that IP(3)/Ca(2+) signaling is involved in the let-413/dlg-1 pathway for the establishment of epithelial cell polarity during the development in C. elegans. Using RNAi to interfere with let-413 and dlg-1 gene functions during post-embryogenesis, we discovered a requirement for LET-413 and DLG-1 in the polarization of the spermathecal cells. The spermatheca forms an accordion-like organ through which eggs must enter to complete the ovulation process. LET-413- and DLG-1-depleted animals exhibit failure of ovulation. Consistent with this phenotype, the assembly of the apical junction into a continuous belt fails and the PAR-3 protein and microfilaments are no longer localized asymmetrically. All these defects can be suppressed by mutations in IPP-5, an inositol polyphosphate 5-phosphatase and in ITR-1, an inositol triphosphate receptor, which both are supposed to increase the intracellular Ca(2+) level. Analysis of embryogenesis revealed that IP(3)/Ca(2+) signaling is also required during junction assembly in embryonic epithelia.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Calcium Signaling , Guanylate Kinases/physiology , Inositol Phosphates/metabolism , Intercellular Junctions/metabolism , Animals , Caenorhabditis elegans/embryology , Caenorhabditis elegans/growth & development , Cell Polarity , Embryonic Development , Epithelial Cells , Epithelium , Female , Male , Ovulation
8.
Differentiation ; 76(8): 881-96, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18452552

ABSTRACT

The Caenorhabditis elegans intestinal lumen is surrounded by a dense cytoplasmic network that is laterally attached to the junctional complex and is referred to as the endotube. It localizes to the terminal web region which anchors the microvillar actin filament bundles and is particularly rich in intermediate filaments. To examine their role in intestinal morphogenesis and function, C. elegans reporter strains were generated expressing intestine-specific CFP-tagged intermediate filament polypeptide IFB-2. When these animals were treated with dsRNA against intestinal intermediate filament polypeptide IFC-2, the endotube developed multiple bubble-shaped invaginations that protruded into the enterocytic cytoplasm. The irregularly widened lumen remained surrounded by a continuous IFB-2::CFP-labeled layer. Comparable but somewhat mitigated phenotypic changes were also noted in wild-type N2 worms treated with ifc-2 (RNAi). Junctional complexes were ultrastructurally and functionally normal and the apical domain of intestinal cells was also not altered. These observations demonstrate that IFC-2 is important for structural maintenance of the intestinal tube but is not needed for establishment of the endotube and epithelial cell polarity.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/physiology , Intermediate Filament Proteins/physiology , Intestinal Mucosa/metabolism , Intestines/cytology , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans Proteins/ultrastructure , Cell Polarity/genetics , Cell Polarity/physiology , Epithelial Cells/cytology , Gene Expression Regulation, Developmental/physiology , Homeostasis/physiology , Intermediate Filament Proteins/biosynthesis , Intermediate Filament Proteins/genetics , Intestines/ultrastructure , Microscopy, Confocal , Microscopy, Electron, Transmission
SELECTION OF CITATIONS
SEARCH DETAIL
...