Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Life Sci Alliance ; 5(3)2022 03.
Article in English | MEDLINE | ID: mdl-34857647

ABSTRACT

In Wilson disease, excessive copper accumulates in patients' livers and may, upon serum leakage, severely affect the brain according to current viewpoints. Present remedies aim at avoiding copper toxicity by chelation, for example, by D-penicillamine (DPA) or bis-choline tetrathiomolybdate (ALXN1840), the latter with a very high copper affinity. Hence, ALXN1840 may potentially avoid neurological deterioration that frequently occurs upon DPA treatment. As the etiology of such worsening is unclear, we reasoned that copper loosely bound to albumin, that is, mimicking a potential liver copper leakage into blood, may damage cells that constitute the blood-brain barrier, which was found to be the case in an in vitro model using primary porcine brain capillary endothelial cells. Such blood-brain barrier damage was avoided by ALXN1840, plausibly due to firm protein embedding of the chelator bound copper, but not by DPA. Mitochondrial protection was observed, a prerequisite for blood-brain barrier integrity. Thus, high-affinity copper chelators may minimize such deterioration in the treatment of neurologic Wilson disease.


Subject(s)
Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Copper/metabolism , Molybdenum/pharmacology , Penicillamine/pharmacology , Animals , Biological Transport , Biomarkers , Blood-Brain Barrier/diagnostic imaging , Brain/diagnostic imaging , Brain/drug effects , Brain/metabolism , Brain/pathology , Cell Survival , Chelating Agents/pharmacology , Copper/adverse effects , Copper/chemistry , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Humans , Mice, Transgenic , Mitochondria/metabolism , Mitochondria/ultrastructure , Models, Molecular , Positron-Emission Tomography , Protein Binding , Rats , Serum Albumin/chemistry , Serum Albumin/metabolism , Structure-Activity Relationship
3.
Radiat Prot Dosimetry ; 178(4): 382-404, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-28981844

ABSTRACT

Biological and physical retrospective dosimetry are recognised as key techniques to provide individual estimates of dose following unplanned exposures to ionising radiation. Whilst there has been a relatively large amount of recent development in the biological and physical procedures, development of statistical analysis techniques has failed to keep pace. The aim of this paper is to review the current state of the art in uncertainty analysis techniques across the 'EURADOS Working Group 10-Retrospective dosimetry' members, to give concrete examples of implementation of the techniques recommended in the international standards, and to further promote the use of Monte Carlo techniques to support characterisation of uncertainties. It is concluded that sufficient techniques are available and in use by most laboratories for acute, whole body exposures to highly penetrating radiation, but further work will be required to ensure that statistical analysis is always wholly sufficient for the more complex exposure scenarios.


Subject(s)
Radiation Dosage , Radiometry/methods , Uncertainty , Body Burden , Europe , Humans , Radiation Monitoring , Radiation, Ionizing , Risk Assessment/methods
4.
Int J Radiat Biol ; 93(1): 65-74, 2017 01.
Article in English | MEDLINE | ID: mdl-27584947

ABSTRACT

PURPOSE: In the EC-funded project RENEB (Realizing the European Network in Biodosimetry), physical methods applied to fortuitous dosimetric materials are used to complement biological dosimetry, to increase dose assessment capacity for large-scale radiation/nuclear accidents. This paper describes the work performed to implement Optically Stimulated Luminescence (OSL) and Electron Paramagnetic Resonance (EPR) dosimetry techniques. MATERIALS AND METHODS: OSL is applied to electronic components and EPR to touch-screen glass from mobile phones. To implement these new approaches, several blind tests and inter-laboratory comparisons (ILC) were organized for each assay. RESULTS: OSL systems have shown good performances. EPR systems also show good performance in controlled conditions, but ILC have also demonstrated that post-irradiation exposure to sunlight increases the complexity of the EPR signal analysis. CONCLUSIONS: Physically-based dosimetry techniques present high capacity, new possibilities for accident dosimetry, especially in the case of large-scale events. Some of the techniques applied can be considered as operational (e.g. OSL on Surface Mounting Devices [SMD]) and provide a large increase of measurement capacity for existing networks. Other techniques and devices currently undergoing validation or development in Europe could lead to considerable increases in the capacity of the RENEB accident dosimetry network.


Subject(s)
Biological Assay/instrumentation , Electron Spin Resonance Spectroscopy/instrumentation , Radiation Exposure/analysis , Thermoluminescent Dosimetry/instrumentation , Triage/methods , Biological Assay/standards , Electron Spin Resonance Spectroscopy/standards , Equipment Design , Equipment Failure Analysis , Europe , Humans , Lymphocytes/radiation effects , Quality Assurance, Health Care , Reproducibility of Results , Sensitivity and Specificity , Systems Integration , Thermoluminescent Dosimetry/standards , Triage/standards
5.
Radiat Environ Biophys ; 53(2): 311-20, 2014 May.
Article in English | MEDLINE | ID: mdl-24671362

ABSTRACT

This paper presents the results of an interlaboratory comparison of retrospective dosimetry using the electron paramagnetic resonance method. The test material used in this exercise was glass coming from the touch screens of smart phones that might be used as fortuitous dosimeters in a large-scale radiological incident. There were 13 participants to whom samples were dispatched, and 11 laboratories reported results. The participants received five calibration samples (0, 0.8, 2, 4, and 10 Gy) and four blindly irradiated samples (0, 0.9, 1.3, and 3.3 Gy). Participants were divided into two groups: for group A (formed by three participants), samples came from a homogeneous batch of glass and were stored in similar setting; for group B (formed by eight participants), samples came from different smart phones and stored in different settings of light and temperature. The calibration curves determined by the participants of group A had a small error and a critical level in the 0.37-0.40-Gy dose range, whereas the curves determined by the participants of group B were more scattered and led to a critical level in the 1.3-3.2-Gy dose range for six participants out of eight. Group A were able to assess the dose within 20 % for the lowest doses (<1.5 Gy) and within 5 % for the highest doses. For group B, only the highest blind dose could be evaluated in a reliable way because of the high critical values involved. The results from group A are encouraging, whereas the results from group B suggest that the influence of environmental conditions and the intervariability of samples coming from different smart phones need to be further investigated. An alongside conclusion is that the protocol was easily transferred to participants making a network of laboratories in case of a mass casualty event potentially feasible.


Subject(s)
Cell Phone , Electron Spin Resonance Spectroscopy/methods , Glass , Radiometry/methods , Calibration , Humans , Statistics as Topic
6.
Ann Ist Super Sanita ; 45(3): 287-96, 2009.
Article in English | MEDLINE | ID: mdl-19861734

ABSTRACT

Dosimetry based on the detection by electron paramagnetic resonance (EPR) spectroscopy of ionizing radiation-induced radicals is an established method for the retrospective dosimetry of past exposures and the dosimetry of potentially exposed persons in radiological emergencies. The dose is estimated by measuring the physical damage induced in materials contained in objects placed on or next to the potentially exposed person. The aim of this paper is to survey the current literature about methodologies and materials that have been proposed for EPR dosimetry, in order to identify those that could be suitable for population triage according to criteria such as ubiquity, non invasiveness and easy sample collection, presence of a post-irradiation EPR signal, negligible background signal, linearity of dose-response relationship, minimum detection limit and post-irradiation signal stability. The paper will survey the features of sugar, plastics, glass, clothing tissues, and solid biological tissues (nails, hair and calcified tissues).


Subject(s)
Electron Spin Resonance Spectroscopy , Radiometry/methods , Humans , Radioactive Hazard Release , Triage
7.
Health Phys ; 88(2): 139-53, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15650589

ABSTRACT

Waterborne releases to the Techa River from the Mayak Production Association in Russia during 1949-1956 resulted in significant doses to persons living downstream; the most contaminated village was Metlino, about 7 km from the site of release. Internal and external doses have been estimated for these residents using the Techa River Dosimetry System-2000 (TRDS-2000); the primary purpose is to support epidemiological studies of the members of the Extended Techa River Cohort. Efforts to validate the calculations of external and internal dose are considered essential. One validation study of the TRDS-2000 system has been performed by the comparison of calculated doses to quartz from bricks in old buildings at Metlino with those measured by luminescence dosimetry. Two additional methods of validation considered here are electron paramagnetic resonance (EPR) measurements of teeth and fluorescence in situ hybridization (FISH) measurements of chromosome translocations in circulating lymphocytes. For electron paramagnetic resonance, 36 measurements on 26 teeth from 16 donors from Metlino were made at the GSF-National Research Center for Environment and Health (16 measurements) and the Institute of Metal Physics (20 measurements); the correlation among measurements made at the two laboratories has been found to be 0.99. Background measurements were also made on 218 teeth (63 molars, 128 premolars, and 27 incisors). Fluorescence in situ hybridization measurements were made for 31 residents of Metlino. These measurements were handicapped by the analysis of a limited number of cells; for several individuals no stable translocations were observed. Fluorescence in situ hybridization measurements were also made for 39 individuals believed to be unexposed. The EPR- and FISH-based estimates agreed well for permanent residents of Metlino: 0.67 +/- 0.21 Gy and 0.48 +/- 0.18 Gy (mean +/- standard error of the mean), respectively. Results of the two experimental methods also agreed well with the estimates derived from the use of the TRDS-2000. For all persons investigated according to each technique, the EPR-measured dose to enamel was 0.55 +/- 0.17 Gy, and the TRDS-2000 prediction for the dose to enamel for these individuals is 0.55 +/- 0.07 Gy. The fluorescence in situ hybridization-based dose, 0.38 +/- 0.10 Gy, compared well to the TRDS-2000 prediction of external dose, 0.31 +/- 0.03 Gy, to red bone marrow for these persons. Validation of external doses at the remaining villages is an active area of investigation.


Subject(s)
Chromosome Aberrations/radiation effects , In Situ Hybridization, Fluorescence/methods , Radiation Monitoring , Tooth/radiation effects , Aged , Chromosome Painting/methods , Electron Spin Resonance Spectroscopy , Humans , Lymphocytes/radiation effects , Lymphocytes/ultrastructure , Middle Aged , Radiation Dosage , Radioactive Waste , Tooth/ultrastructure , Water Pollutants, Radioactive
8.
Health Phys ; 85(4): 409-19, 2003 Oct.
Article in English | MEDLINE | ID: mdl-13678281

ABSTRACT

Human teeth have been considered as dosimeters for decades. Methods include the in vivo measurement of 90Sr/90Y in teeth with a tooth-beta counter, the radiochemical determination of 90Sr in whole teeth, and the measurement of dose in teeth by use of electron paramagnetic resonance. Presented in this paper are results of 2,514 tooth-beta counter measurements, 334 radiochemical measurements, and 218 electron paramagnetic resonance measurements for residents living in settlements along the Techa River. All three kinds of measurements indicate a sharp peak that corresponds to the uptake of 90Sr by tooth tissue. The results can be interpreted in terms of an intake function for 90Sr only if the period of calcification of each individual tooth is considered--such detail on a tooth-by-tooth basis is presented in this paper. The conclusion is reached that the tooth-beta counter data are the most reliable in terms of reconstruction of 90Sr intake; this is due in part to the fact that the tooth-beta counter measures four teeth (all at position 1) with essentially the same time periods of mineralization and because there are a large number of tooth-beta counter measurements. The main utility of electron paramagnetic resonance measurements is considered to be the validation of estimates of external dose; but for this purpose teeth with 90Sr taken up into enamel must be avoided.


Subject(s)
Dental Enamel/radiation effects , Radioactive Fallout , Strontium Radioisotopes/analysis , Tooth/growth & development , Tooth/radiation effects , Adolescent , Age Factors , Bone and Bones/radiation effects , Child , Child, Preschool , Electron Spin Resonance Spectroscopy , Environmental Exposure , Humans , Infant , Infant, Newborn , Russia , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...