Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
NPJ Parkinsons Dis ; 9(1): 137, 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37741841

ABSTRACT

Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson's disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress1. We have now characterized this colocalization and functional correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated mitochondrial uptake of Ca2+ from the ER, depending on formation of its N-terminal helices but not on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between mitochondria and ER, and we show increased contacts between these two organelles using structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and found that a-syn prevents recovery of stimulated mitochondrial Ca2+ uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate Ca2+ flux between ER and mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a pathological role of a-syn in the etiology of PD.

2.
Biophys J ; 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37533258

ABSTRACT

Interleaflet coupling-the influence of one leaflet on the properties of the opposing leaflet-is a fundamental plasma membrane organizational principle. This coupling is proposed to participate in maintaining steady-state biophysical properties of the plasma membrane, which in turn regulates some transmembrane signaling processes. A prominent example is antigen (Ag) stimulation of signaling by clustering transmembrane receptors for immunoglobulin E (IgE), FcεRI. This transmembrane signaling depends on the stabilization of ordered regions in the inner leaflet for sorting of intracellular signaling components. The resting inner leaflet has a lipid composition that is generally less ordered than the outer leaflet and that does not spontaneously phase separate in model membranes. We propose that interleaflet coupling can mediate ordering and disordering of the inner leaflet, which is poised in resting cells to reorganize upon stimulation. To test this in live cells, we first established a straightforward approach to evaluate induced changes in membrane order by measuring inner leaflet diffusion of lipid probes by imaging fluorescence correlation spectroscopy, by imaging fluorescence correlation spectroscopy (ImFCS), before and after methyl-α-cyclodexrin (mαCD)-catalyzed exchange of outer leaflet lipids (LEX) with exogenous order- or disorder-promoting phospholipids. We examined the functional impact of LEX by monitoring two Ag-stimulated responses: recruitment of cytoplasmic Syk kinase to the inner leaflet and exocytosis of secretory granules (degranulation). Based on the ImFCS data in resting cells, we observed global increase or decrease of inner leaflet order when outer leaflet is exchanged with order- or disorder-promoting lipids, respectively. We find that the degree of both stimulated Syk recruitment and degranulation correlates positively with LEX-mediated changes of inner leaflet order in resting cells. Overall, our results show that resting-state lipid ordering of the outer leaflet influences the ordering of the inner leaflet, likely via interleaflet coupling. This imposed lipid reorganization modulates transmembrane signaling stimulated by Ag clustering of IgE-FcεRI.

3.
bioRxiv ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37163091

ABSTRACT

Alpha synuclein (a-syn) is an intrinsically disordered protein prevalent in neurons, and aggregated forms are associated with synucleinopathies including Parkinson' disease (PD). Despite the biomedical importance and extensive studies, the physiological role of a-syn and its participation in etiology of PD remain uncertain. We showed previously in model RBL cells that a-syn colocalizes with mitochondrial membranes, depending on formation of N-terminal helices and increasing with mitochondrial stress. 1 We have now characterized this colocalization and functional correlates in RBL, HEK293, and N2a cells. We find that expression of a-syn enhances stimulated mitochondrial uptake of Ca 2+ from the ER, depending on formation of its N-terminal helices but not on its disordered C-terminal tail. Our results are consistent with a-syn acting as a tether between mitochondria and ER, and we show increased contacts between these two organelles using structured illumination microscopy. We tested mitochondrial stress caused by toxins related to PD, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP/MPP+) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP), and found that a-syn prevents recovery of stimulated mitochondrial Ca 2+ uptake. The C-terminal tail, and not N-terminal helices, is involved in this inhibitory activity, which is abrogated when phosphorylation site serine-129 is mutated (S129A). Correspondingly, we find that MPTP/MPP+ and CCCP stress is accompanied by both phosphorylation (pS129) and aggregation of a-syn. Overall, our results indicate that a-syn can participate as a tethering protein to modulate Ca 2+ flux between ER and mitochondria, with potential physiological significance. A-syn can also prevent cellular recovery from toxin-induced mitochondrial dysfunction, which may represent a pathological role of a-syn in the etiology of PD.

4.
Proc Natl Acad Sci U S A ; 118(35)2021 08 31.
Article in English | MEDLINE | ID: mdl-34433665

ABSTRACT

Antigen (Ag) crosslinking of immunoglobulin E-receptor (IgE-FcεRI) complexes in mast cells stimulates transmembrane (TM) signaling, requiring phosphorylation of the clustered FcεRI by lipid-anchored Lyn tyrosine kinase. Previous studies showed that this stimulated coupling between Lyn and FcεRI occurs in liquid ordered (Lo)-like nanodomains of the plasma membrane and that Lyn binds directly to cytosolic segments of FcεRI that it initially phosphorylates for amplified activity. Net phosphorylation above a nonfunctional threshold is achieved in the stimulated state but not in the resting state, and current evidence supports the hypothesis that this relies on Ag crosslinking to disrupt a balance between Lyn and tyrosine phosphatase activities. However, the structural interactions that underlie the stimulation process remain poorly defined. This study evaluates the relative contributions and functional importance of different types of interactions leading to suprathreshold phosphorylation of Ag-crosslinked IgE-FcεRI in live rat basophilic leukemia mast cells. Our high-precision diffusion measurements by imaging fluorescence correlation spectroscopy on multiple structural variants of Lyn and other lipid-anchored probes confirm subtle, stimulated stabilization of the Lo-like nanodomains in the membrane inner leaflet and concomitant sharpening of segregation from liquid disordered (Ld)-like regions. With other structural variants, we determine that lipid-based interactions are essential for access by Lyn, leading to phosphorylation of and protein-based binding to clustered FcεRI. By contrast, TM tyrosine phosphatase, PTPα, is excluded from these regions due to its Ld-preference and steric exclusion of TM segments. Overall, we establish a synergy of lipid-based, protein-based, and steric interactions underlying functional TM signaling in mast cells.


Subject(s)
Antigens/metabolism , Cell Membrane/metabolism , Lipids/physiology , Mast Cells/metabolism , Receptors, IgE/metabolism , Signal Transduction , Animals , Antigens/immunology , CHO Cells , Cell Line, Tumor , Cells, Cultured , Cricetulus , Green Fluorescent Proteins/metabolism , Lipid Metabolism , Mast Cells/immunology , Nanostructures , Rats , src-Family Kinases/metabolism
5.
Protein J ; 39(5): 476-486, 2020 10.
Article in English | MEDLINE | ID: mdl-33211253

ABSTRACT

Epidermal growth factor receptor (EGFR) dysregulation is observed in many human cancers and is both a cause of oncogenesis and a target for chemotherapy. We previously showed that partial charge neutralization of the juxtamembrane (JX) region of EGFR via the EGFR R1-6 mutant construct induces constitutive receptor activation and transformation of NIH 3T3 cells, both from the plasma membrane and from the ER when combined with the ER-retaining L417H mutation (Bryant et al. in J Biol Chem 288:34930-34942, 2013). Here, we use chemical crosslinking and immunoblotting to show that these mutant constructs form constitutive, phosphorylated dimers in both the plasma membrane and the ER. Furthermore, we combine this electrostatic perturbation with conformationally-restricted receptor mutants to provide evidence that activation of EGFR R1-6 dimers requires functional coupling both between the EGFR extracellular dimerization arms and between intracellular tyrosine kinase domains. These findings provide evidence that the electrostatic charge of the JX region normally serves as a negative regulator of functional dimerization of EGFR.


Subject(s)
Protein Multimerization , Amino Acid Substitution , Animals , ErbB Receptors/chemistry , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Mice , Mutation, Missense , NIH 3T3 Cells , Phosphorylation , Protein Domains
6.
J Allergy (Cairo) ; 2012: 790910, 2012.
Article in English | MEDLINE | ID: mdl-21804830

ABSTRACT

Background & Objective. Ultrarush induction for specific venom immunotherapy has been shown to be reliable and efficacious in adults. In this study its safety and tolerance in children was evaluated. Methods. Retrospective analysis of 102 ultrarush desensitizations carried out between 1997 and 2005 in 94 children, aged 4 to 15 years. Diagnosis and selection for immunotherapy were according to recommendations of the European Academy of Allergy and Clinical Immunology. Systemic adverse reactions (SARs) were described using the classification of H. L. Mueller. Results. All patients reached the cumulative dose of 111.1 µg hymenoptera venom within 210 minutes. Six patients (6%) had allergic reactions grade I; 2 patients (2%) grade II and 5 patients (5%) grade III. Three patients (3%) showed unclassified reactions. SARs did not occur in the 15 patients aged 4 to 8 years and they were significantly more frequent in girls (29%) compared with boys (12%) (P = 0.034, multivariant analysis) and in bee venom extract treated patients (20%) compared to those treated with wasp venom extract (8%) (OR 0.33, 95% Cl 0.07-1.25). Conclusion. Initiation of specific immunotherapy by ultrarush regimen is safe and well tolerated in children and should be considered for treating children with allergy to hymenoptera venom.

7.
Mol Biol Cell ; 22(24): 4908-17, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22013076

ABSTRACT

Protein kinase C ß (PKCß) participates in antigen-stimulated mast cell degranulation mediated by the high-affinity receptor for immunoglobulin E, FcεRI, but the molecular basis is unclear. We investigated the hypothesis that the polybasic effector domain (ED) of the abundant intracellular substrate for protein kinase C known as myristoylated alanine-rich protein kinase C substrate (MARCKS) sequesters phosphoinositides at the inner leaflet of the plasma membrane until MARCKS dissociates after phosphorylation by activated PKC. Real-time fluorescence imaging confirms synchronization between stimulated oscillations of intracellular Ca(2+) concentrations and oscillatory association of PKCß-enhanced green fluorescent protein with the plasma membrane. Similarly, MARCKS-ED tagged with monomeric red fluorescent protein undergoes antigen-stimulated oscillatory dissociation and rebinding to the plasma membrane with a time course that is synchronized with reversible plasma membrane association of PKCß. We find that MARCKS-ED dissociation is prevented by mutation of four serine residues that are potential sites of phosphorylation by PKC. Cells expressing this mutated MARCKS-ED SA4 show delayed onset of antigen-stimulated Ca(2+) mobilization and substantial inhibition of granule exocytosis. Stimulation of degranulation by thapsigargin, which bypasses inositol 1,4,5-trisphosphate production, is also substantially reduced in the presence of MARCKS-ED SA4, but store-operated Ca(2+) entry is not inhibited. These results show the capacity of MARCKS-ED to regulate granule exocytosis in a PKC-dependent manner, consistent with regulated sequestration of phosphoinositides that mediate granule fusion at the plasma membrane.


Subject(s)
Calcium/metabolism , Cell Degranulation/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Mast Cells/metabolism , Membrane Proteins/metabolism , Phosphatidylinositols/metabolism , Secretory Vesicles/metabolism , Animals , Antigens/metabolism , Cell Line , Intracellular Signaling Peptides and Proteins/genetics , Lipoylation/physiology , Membrane Proteins/genetics , Mice , Mutation , Myristoylated Alanine-Rich C Kinase Substrate , Phosphatidylinositols/genetics , Phosphorylation/physiology , Protein Kinase C/genetics , Protein Kinase C/metabolism , Protein Kinase C beta , Protein Structure, Tertiary , Secretory Vesicles/genetics
8.
J Inherit Metab Dis ; 33(6): 751-7, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20882352

ABSTRACT

Pompe disease is a rare lysosomal glycogen storage disorder characterized by deficiency of acid α-glucosidase enzyme (GAA) and caused by mutations in the GAA gene. Infantile-type Pompe disease is a multiorgan disorder presenting with cardiomyopathy, hypotonia, and muscular weakness, which is usually fatal. Enzyme replacement therapy (ERT) with recombinant human GAA (rhGAA) has recently been shown to be effective and subsequently yielded promising results in cross-reactive immunologic material (CRIM)-positive patients. CRIM-negative patients showed a limited response to ERT and died or were ventilator dependant. Over a period of 44 months, we monitored cognitive and motor development, behavior, auditory function, and brain imaging of a CRIM-negative infantile Pompe disease patient on rhGAA and monoclonal anti-immunoglobulin E (anti-IgE) antibody (omalizumab) treatment due to severe allergic reaction. Cardiorespiratory and skeletal muscle response was significant, with almost normal motor development. Cognitive development-in particular, speech and language-deviated increasingly from normal age-appropriate development and was markedly delayed at 44 months, unexplained by moderate sensorineural hearing impairment. Brain magnetic resonance imaging (MRI) at 18, 30, and 44 months of age revealed symmetrical signal alteration of the deep white matter. Titer values of IgG antibodies to rhGAA always remained <1:800. The potential role of omalizumab in immune modulation remains to be elucidated; however, this is the first report presenting a ventilator-free survival of a CRIM-negative patient beyond the age of 36 months. The central nervous system (CNS) findings are hypothesized to be part of a yet not fully described CNS phenotype in treated patients with longer survival.


Subject(s)
Antibodies, Anti-Idiotypic/blood , Enzyme Replacement Therapy , Glycogen Storage Disease Type II/drug therapy , alpha-Glucosidases/therapeutic use , Child, Preschool , Cross Reactions/immunology , Follow-Up Studies , Glycogen Storage Disease Type II/blood , Glycogen Storage Disease Type II/immunology , Humans , Infant , Time Factors , Treatment Outcome
9.
Self Nonself ; 1(2): 133-143, 2010.
Article in English | MEDLINE | ID: mdl-21423874

ABSTRACT

Mast cell stimulation via IgE receptors causes activation of multiple processes, including Ca(2+) mobilization, granule exocytosis, and outward trafficking of recycling endosomes to the plasma membrane. We used fluorescein-conjugated cholera toxin B (FITC-CTxB) to label GM(1) in recycling endsomes and to monitor antigen-stimulated trafficking to the plasma membrane in both fluorimeter and imaging-based assays. We find that the sphingosine derivatives D-sphingosine and N,N'-dimethylsphingosine effectively inhibit this outward trafficking response, whereas a quarternary ammonium derivative, N,N',N″-trimethylsphingosine, does not inhibit. This pattern of inhibition is also found for Ca(2+) mobilization and secretory lysosomal exocytosis, indicating a general effect on Ca(2+)-dependent signaling processes. This inhibition correlates with the capacity of sphingosine derivatives to flip to the inner leaflet of the plasma membrane that is manifested as changes in plasma membrane-associated FITC-CTxB fluorescence and cytoplasmic pH. Using a fluorescently labeled MARCKS effector domain to monitor plasma membrane-associated polyphosphoinositides, we find that these sphingosine derivatives displace the electrostatic binding of this MARCKS effector domain to the plasma membrane in parallel with their capacity to inhibit Ca(2+)-dependent signaling. Our results support roles for plasma membrane polyphosphoinositides in Ca(2+) signaling and stimulated exocytosis, and they illuminate a mechanism by which D-sphingosine regulates signaling responses in mammalian cells.

10.
J Struct Biol ; 168(1): 161-7, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19427382

ABSTRACT

In mast cells, antigen-mediated cross-linking of IgE bound to its high-affinity surface receptor, FcepsilonRI, initiates a signaling cascade that culminates in degranulation and release of allergic mediators. Antigen-patterned surfaces, in which the antigen is deposited in micron-sized features on a silicon substrate, were used to examine the spatial relationship between clustered IgE-FcepsilonRI complexes and Lyn, the signal-initiating tyrosine kinase. RBL mast cells expressing wild-type Lyn-EGFP showed co-redistribution of this protein with clustered IgE receptors on antigen-patterned surfaces, whereas Lyn-EGFP containing an inhibitory point mutation in its SH2 domain did not significantly accumulate with the patterned antigen, and Lyn-EGFP with an inhibitory point mutation in its SH3 domain exhibited reduced interactions. Our results using antigen-patterned surfaces and quantitative cross-correlation image analysis reveal that both the SH2 and SH3 domains contribute to interactions between Lyn kinase and cross-linked IgE receptors in stimulated mast cells.


Subject(s)
Mast Cells/metabolism , Receptors, IgE/chemistry , Receptors, IgE/metabolism , src Homology Domains/physiology , src-Family Kinases/chemistry , src-Family Kinases/metabolism , Animals , Mice , Point Mutation/genetics , Point Mutation/physiology , Protein Binding , Receptors, IgE/genetics , src Homology Domains/genetics , src-Family Kinases/genetics
11.
Dermatology ; 213(4): 313-8, 2006.
Article in English | MEDLINE | ID: mdl-17135737

ABSTRACT

BACKGROUND: Controlled studies established the efficacy and good tolerability of pimecrolimus cream 1% for the treatment of atopic dermatitis but they may not reflect real-life use. OBJECTIVE: To evaluate the efficacy, tolerability and cosmetic acceptance of a pimecrolimus-based regimen in daily practice in Switzerland. METHODS: This was a 6-month, open-label, multicentre study in 109 patients (55% > or = 18 years) with atopic dermatitis. Pimecrolimus cream 1% was incorporated into patients' standard treatment protocols. RESULTS: The pimecrolimus-based treatment was well tolerated and produced disease improvement in 65.7% of patients. It was particularly effective on the face (improvement rate: 75.0%). Mean pimecrolimus consumption decreased from 6.4 g/day (months 1-3) to 4.0 g/day (months 3-6) as disease improved. Most patients (74.1%) rated their disease control as 'complete' or 'good' and 90% were highly satisfied with the cream formulation. CONCLUSION: The use of a pimecrolimus-based regimen in everyday practice was effective, well tolerated and well accepted by patients.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Calcineurin Inhibitors , Dermatitis, Atopic/drug therapy , Peptidylprolyl Isomerase/antagonists & inhibitors , Tacrolimus/analogs & derivatives , Administration, Cutaneous , Adolescent , Adult , Aged , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Child , Child, Preschool , Cohort Studies , Facial Dermatoses/drug therapy , Female , Follow-Up Studies , Humans , Infant , Male , Middle Aged , Ointments , Patient Satisfaction , Safety , Tacrolimus/administration & dosage , Tacrolimus/therapeutic use , Treatment Outcome
12.
Biochim Biophys Acta ; 1746(3): 252-9, 2005 Dec 30.
Article in English | MEDLINE | ID: mdl-16054713

ABSTRACT

Recent work to characterize the roles of lipid segregation in IgE receptor signaling has revealed a mechanism by which segregation of liquid ordered regions from disordered regions of the plasma membrane results in protection of the Src family kinase Lyn from inactivating dephosphorylation by a transmembrane tyrosine phosphatase. Antigen-mediated crosslinking of IgE receptors drives their association with the liquid ordered regions, commonly called lipid rafts, and this facilitates receptor phosphorylation by active Lyn in the raft environment. Previous work showed that the membrane skeleton coupled to F-actin regulates stimulated receptor phosphorylation and downstream signaling processes, and more recent work implicates cytoskeletal interactions with ordered lipid rafts in this regulation. These and other results provide an emerging view of the complex role of membrane structure in orchestrating signal transduction mediated by immune and other cell surface receptors.


Subject(s)
Cell Membrane/metabolism , Membrane Lipids/physiology , Receptors, IgE/physiology , src-Family Kinases/metabolism , Animals , Cytoskeleton/physiology , Humans , Membrane Microdomains/metabolism , Membrane Proteins/metabolism , Phosphorylation , Signal Transduction
13.
J Immunol ; 175(4): 2123-31, 2005 Aug 15.
Article in English | MEDLINE | ID: mdl-16081778

ABSTRACT

To investigate structural features critical for signal initiation by Ag-stimulated immunoreceptors, we constructed a series of single-chain chimeric receptors that incorporate extracellular human Fc epsilonRIalpha for IgE binding, a variable transmembrane (TM) segment, and the ITAM-containing cytoplasmic tail of the TCR zeta-chain. We find that functional responses mediated by these receptors are strongly dependent on their TM sequences, and these responses are highly correlated to cross-link-dependent association with detergent-resistant lipid rafts. For one chimera designated alpha Fzeta, mutation of a TM cysteine abolishes robust signaling and lipid raft association. In addition, TM disulfide-mediated oligomerization of another chimeric receptor, alpha zetazeta, enhances signaling. These results demonstrate an important role for TM segments in immunoreceptor signaling and a strong correspondence between strength of signaling and cross-link-dependent partitioning into ordered membrane domains.


Subject(s)
Epitopes/physiology , Membrane Microdomains/immunology , Membrane Microdomains/metabolism , Receptors, IgE/physiology , Signal Transduction/immunology , Amino Acid Sequence , Animals , Calcium/metabolism , Cell Degranulation/genetics , Cell Degranulation/immunology , Cell Line, Tumor , Centrifugation, Density Gradient , Clone Cells , Cross-Linking Reagents/metabolism , Humans , Membrane Microdomains/genetics , Octoxynol , Phosphorylation , Rats , Receptors, IgE/biosynthesis , Receptors, IgE/genetics , Receptors, IgE/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Signal Transduction/genetics , Sucrose , Tyrosine/metabolism
14.
Biophys J ; 85(4): 2566-80, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14507719

ABSTRACT

The main potential of intrinsically fluorescent proteins (IFPs), as noninvasive and site-specific markers, lies in biological applications such as intracellular visualization and molecular genetics. However, photophysical studies of IFPs have been carried out mainly in aqueous solution. Here, we provide a comprehensive analysis of the intracellular environmental effects on the steady-state spectroscopy and excited-state dynamics of green (EGFP) and red (DsRed) fluorescent proteins, using both one- and two-photon excitation. EGFP and DsRed are expressed either in the cytoplasm of rat basophilic leukemia (RBL-2H3) mucosal mast cells or anchored (via LynB protein) to the inner leaflet of the plasma membrane. The fluorescence lifetimes (within approximately 10%) and spectra in live cells are basically the same as in aqueous solution, which indicate the absence of both IFP aggregation and cellular environmental effects on the protein folding under our experimental conditions. However, comparative time-resolved anisotropy measurements of EGFP reveal a cytoplasmic viscosity 2.5 +/- 0.3 times larger than that of aqueous solution at room temperature, and also provide some insights into the LynB-EGFP structure and the heterogeneity of the cytoplasmic viscosity. Further, the oligomer configuration and internal depolarization of DsRed, previously observed in solution, persists upon expression in these cells. DsRed also undergoes an instantaneous three-photon induced color change under 740-nm excitation, with efficiently nonradiative green species. These results confirm the implicit assumption that in vitro fluorescence properties of IFPs are essentially valid for in vivo applications, presumably due to the beta-barrel protection of the embodied chromophore. We also discuss the relevance of LynB-EGFP anisotropy for specialized domains studies in plasma membranes.


Subject(s)
Luminescent Proteins/chemistry , Luminescent Proteins/metabolism , Mast Cells/metabolism , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Cells, Cultured , Cytoplasm/metabolism , Diffusion , Green Fluorescent Proteins , Hydrogen-Ion Concentration , Microscopy, Fluorescence, Multiphoton/methods , Rats , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...