Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Am J Hum Genet ; 110(11): 1950-1958, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37883979

ABSTRACT

As large-scale genomic screening becomes increasingly prevalent, understanding the influence of actionable results on healthcare utilization is key to estimating the potential long-term clinical impact. The eMERGE network sequenced individuals for actionable genes in multiple genetic conditions and returned results to individuals, providers, and the electronic health record. Differences in recommended health services (laboratory, imaging, and procedural testing) delivered within 12 months of return were compared among individuals with pathogenic or likely pathogenic (P/LP) findings to matched individuals with negative findings before and after return of results. Of 16,218 adults, 477 unselected individuals were found to have a monogenic risk for arrhythmia (n = 95), breast cancer (n = 96), cardiomyopathy (n = 95), colorectal cancer (n = 105), or familial hypercholesterolemia (n = 86). Individuals with P/LP results more frequently received services after return (43.8%) compared to before return (25.6%) of results and compared to individuals with negative findings (24.9%; p < 0.0001). The annual cost of qualifying healthcare services increased from an average of $162 before return to $343 after return of results among the P/LP group (p < 0.0001); differences in the negative group were non-significant. The mean difference-in-differences was $149 (p < 0.0001), which describes the increased cost within the P/LP group corrected for cost changes in the negative group. When stratified by individual conditions, significant cost differences were observed for arrhythmia, breast cancer, and cardiomyopathy. In conclusion, less than half of individuals received billed health services after monogenic return, which modestly increased healthcare costs for payors in the year following return.


Subject(s)
Breast Neoplasms , Cardiomyopathies , Adult , Humans , Female , Prospective Studies , Patient Acceptance of Health Care , Arrhythmias, Cardiac , Breast Neoplasms/genetics , Cardiomyopathies/genetics
2.
J Genet Couns ; 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37667436

ABSTRACT

A person's phenotypic sex (i.e., endogenous expression of primary, secondary, and endocrinological sex characteristics) can impact crucial aspects of genetic assessment and resulting clinical care recommendations. In studies with genetics components, it is critical to collect phenotypic sex, information about current organ/tissue inventory and hormonal milieu, and gender identity. If researchers do not carefully construct data models, transgender, gender diverse, and sex diverse (TGSD) individuals may be given inappropriate care recommendations and/or be subjected to misgendering, inflicting medical and psychosocial harms. The recognized need for an inclusive care experience should not be limited to clinical practice but should extend to the research setting, where researchers must build an inclusive experience for TGSD participants. Here, we review three TGSD participants in the Family History and Cancer Risk Study (FOREST) to critically evaluate sex- and gender-related survey measures and associated data models in a study seeking to identify patients at risk for hereditary cancer syndromes. Furthermore, we leverage these participants' responses to sex- and gender identity-related questions in FOREST to inform needed changes to the FOREST data model and to make recommendations for TGSD-inclusive genetics research design, data models, and processes.

3.
J Clin Oncol ; 41(34): 5274-5284, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37579253

ABSTRACT

PURPOSE: The genomic underpinnings of inherited lung cancer risk are poorly understood. This prospective study characterized the clinical phenotype of patients and families with germline EGFR pathogenic variants (PVs). METHODS: The Investigating Hereditary Risk from T790M study (ClinicalTrials.gov identifier: NCT01754025) enrolled patients with lung cancer whose tumor profiling harbored possible germline EGFR PVs and their relatives, either in person or remotely, providing germline testing and follow-up. RESULTS: A total of 141 participants were enrolled over a 5-year period, 100 (71%) remotely. Based upon previous genotyping, 116 participants from 59 kindreds were tested for EGFR T790M, demonstrating a pattern of Mendelian inheritance with variable lung cancer penetrance. In confirmed or obligate carriers of a germline EGFR PV from 39 different kindreds, 50/91 (55%) were affected with lung cancer with 34/65 (52%) diagnosed by age 60 years. Somatic testing of lung cancers in carriers revealed that 35 of 37 (95%) had an EGFR driver comutation. Among 36 germline carriers without a cancer diagnosis, 15 had computed tomography (CT) imaging and nine had lung nodules, including a 28-year-old with >10 lung nodules. Given geographic enrichment of germline EGFR T790M in the southeast United States, genome-wide haplotyping of 46 germline carriers was performed and identified a 4.1-Mb haplotype shared by 41 (89%), estimated to originate 223-279 years ago. CONCLUSION: To our knowledge, this is the first prospective description of familial EGFR-mutant lung cancer, identifying a recent founder germline EGFR T790M variant enriched in the Southeast United States. The high prevalence of EGFR-driver lung adenocarcinomas and lung nodules in germline carriers supports effort to identify affected patients and family members for investigation of CT-based screening for these high-risk individuals.


Subject(s)
Lung Neoplasms , Humans , Middle Aged , Adult , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Prospective Studies , ErbB Receptors/genetics , Mutation , Protein Kinase Inhibitors , Germ-Line Mutation , Lung
4.
J Pers Med ; 12(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36422086

ABSTRACT

PURPOSE: The electronic Medical Records and Genomics (eMERGE) Phase III study was undertaken to assess clinical utility of returning medically actionable genomic screening results. We assessed pediatric clinical outcomes following return of pathogenic/likely pathogenic (P/LP) variants in autosomal dominant conditions with available effective interventions. METHODS: The two eMERGE III pediatric sites collected outcome data and assessed changes in medical management at 6 and 12 months. RESULTS: We returned P/LP results to 29 participants with outcome data. For 23 of the 29 participants, the P/LP results were previously unknown. Five of the 23 participants were already followed for conditions related to the P/LP variant. Of those receiving novel results and not being followed for the condition related to the P/LP result (n = 18), 14 (77.8%) had a change in healthcare after return of results (RoR). Following RoR, cascade testing of family members occurred for 10 of 23 (43.5%). CONCLUSIONS: The most common outcomes post-RoR included imaging/laboratory testing and health behavior recommendations. A change in healthcare was documented in 77.8% of those receiving results by 6 months. Our findings demonstrate how return of genomic screening results impacts healthcare in pediatric populations.

6.
Genet Med ; 24(10): 2123-2133, 2022 10.
Article in English | MEDLINE | ID: mdl-35943490

ABSTRACT

PURPOSE: We estimated the penetrance of pathogenic/likely pathogenic (P/LP) variants in arteriopathy-related genes and assessed near-term outcomes following return of results. METHODS: Participants (N = 24,520) in phase III of the Electronic Medical Records and Genomics network underwent targeted sequencing of 68 actionable genes, including 9 genes associated with arterial aneurysmal diseases. Penetrance was estimated on the basis of the presence of relevant clinical traits. Outcomes occurring within 1 year of return of results included new diagnoses, referral to a specialist, new tests ordered, surveillance initiated, and new medications started. RESULTS: P/LP variants were present in 34 participants. The average penetrance across genes was 59%, ranging from 86% for FBN1 variants to 25% for SMAD3. Of 16 participants in whom results were returned, 1-year outcomes occurred in 63%. A new diagnosis was made in 44% of the participants, 56% were referred to a specialist, a new test was ordered in 44%, surveillance was initiated in 31%, and a new medication was started in 31%. CONCLUSION: Penetrance of P/LP variants in arteriopathy-related genes, identified in a large, targeted sequencing study, was variable and overall lower than that reported in clinical cohorts. Meaningful outcomes within the first year were noted in 63% of participants who received results.


Subject(s)
Genomics , Humans , Penetrance , Phenotype
7.
JAMA Oncol ; 8(6): 835-844, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35446370

ABSTRACT

Importance: Knowledge about the spectrum of diseases associated with hereditary cancer syndromes may improve disease diagnosis and management for patients and help to identify high-risk individuals. Objective: To identify phenotypes associated with hereditary cancer genes through a phenome-wide association study. Design, Setting, and Participants: This phenome-wide association study used health data from participants in 3 cohorts. The Electronic Medical Records and Genomics Sequencing (eMERGEseq) data set recruited predominantly healthy individuals from 10 US medical centers from July 16, 2016, through February 18, 2018, with a mean follow-up through electronic health records (EHRs) of 12.7 (7.4) years. The UK Biobank (UKB) cohort recruited participants from March 15, 2006, through August 1, 2010, with a mean (SD) follow-up of 12.4 (1.0) years. The Hereditary Cancer Registry (HCR) recruited patients undergoing clinical genetic testing at Vanderbilt University Medical Center from May 1, 2012, through December 31, 2019, with a mean (SD) follow-up through EHRs of 8.8 (6.5) years. Exposures: Germline variants in 23 hereditary cancer genes. Pathogenic and likely pathogenic variants for each gene were aggregated for association analyses. Main Outcomes and Measures: Phenotypes in the eMERGEseq and HCR cohorts were derived from the linked EHRs. Phenotypes in UKB were from multiple sources of health-related data. Results: A total of 214 020 participants were identified, including 23 544 in eMERGEseq cohort (mean [SD] age, 47.8 [23.7] years; 12 611 women [53.6%]), 187 234 in the UKB cohort (mean [SD] age, 56.7 [8.1] years; 104 055 [55.6%] women), and 3242 in the HCR cohort (mean [SD] age, 52.5 [15.5] years; 2851 [87.9%] women). All 38 established gene-cancer associations were replicated, and 19 new associations were identified. These included the following 7 associations with neoplasms: CHEK2 with leukemia (odds ratio [OR], 3.81 [95% CI, 2.64-5.48]) and plasma cell neoplasms (OR, 3.12 [95% CI, 1.84-5.28]), ATM with gastric cancer (OR, 4.27 [95% CI, 2.35-7.44]) and pancreatic cancer (OR, 4.44 [95% CI, 2.66-7.40]), MUTYH (biallelic) with kidney cancer (OR, 32.28 [95% CI, 6.40-162.73]), MSH6 with bladder cancer (OR, 5.63 [95% CI, 2.75-11.49]), and APC with benign liver/intrahepatic bile duct tumors (OR, 52.01 [95% CI, 14.29-189.29]). The remaining 12 associations with nonneoplastic diseases included BRCA1/2 with ovarian cysts (OR, 3.15 [95% CI, 2.22-4.46] and 3.12 [95% CI, 2.36-4.12], respectively), MEN1 with acute pancreatitis (OR, 33.45 [95% CI, 9.25-121.02]), APC with gastritis and duodenitis (OR, 4.66 [95% CI, 2.61-8.33]), and PTEN with chronic gastritis (OR, 15.68 [95% CI, 6.01-40.92]). Conclusions and Relevance: The findings of this genetic association study analyzing the EHRs of 3 large cohorts suggest that these new phenotypes associated with hereditary cancer genes may facilitate early detection and better management of cancers. This study highlights the potential benefits of using EHR data in genomic medicine.


Subject(s)
Gastritis , Neoplastic Syndromes, Hereditary , Pancreatitis , Acute Disease , Female , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Male
8.
Genet Med ; 24(6): 1297-1305, 2022 06.
Article in English | MEDLINE | ID: mdl-35341654

ABSTRACT

PURPOSE: As genomic sequencing becomes more common, medically actionable secondary findings will increasingly be returned to health care providers (HCPs), who will be faced with managing the resulting patient care. These findings are generally unsolicited, ie, unrelated to the sequencing indication and/or ordered by another clinician. METHODS: To understand the impact of receiving unsolicited results, we interviewed HCPs who received genomic results for patients enrolled in the Electronic Medical Records and Genomics (eMERGE) Phase III Network, which returned results on >100 actionable genes to eMERGE participants and HCPs. RESULTS: In total, 16 HCPs across 3 eMERGE sites were interviewed about their experience of receiving a positive (likely pathogenic or pathogenic), negative, or variant of uncertain significance result for a patient enrolled in eMERGE Phase III and about managing their patient on the basis of the result. Although unsolicited, HCPs felt responsible for managing the patient's resulting medical care. HCPs indicated that clinical utility depended on the actionability of results, and whereas comfort levels varied, confidence was improved by the availability of subspecialist consults. HCPs were concerned about patient anxiety, insurability, and missing an actionable result in the electronic health record. CONCLUSION: Our findings help inform best practices for return of unsolicited genomic screening findings in the future.


Subject(s)
Electronic Health Records , Genome , Genomics , Health Personnel , Humans , Population Groups
9.
Genet Med ; 24(5): 1130-1138, 2022 05.
Article in English | MEDLINE | ID: mdl-35216901

ABSTRACT

PURPOSE: The goal of Electronic Medical Records and Genomics (eMERGE) Phase III Network was to return actionable sequence variants to 25,084 consenting participants from 10 different health care institutions across the United States. The purpose of this study was to evaluate system-based issues relating to the return of results (RoR) disclosure process for clinical grade research genomic tests to eMERGE3 participants. METHODS: RoR processes were developed and approved by each eMERGE institution's internal review board. Investigators at each eMERGE3 site were surveyed for RoR processes related to the participant's disclosure of pathogenic or likely pathogenic variants and engagement with genetic counseling. Standard statistical analysis was performed. RESULTS: Of the 25,084 eMERGE participants, 1444 had a pathogenic or likely pathogenic variant identified on the eMERGEseq panel of 67 genes and 14 single nucleotide variants. Of these, 1077 (74.6%) participants had results disclosed, with 562 (38.9%) participants provided with variant-specific genetic counseling. Site-specific processes that either offered or required genetic counseling in their RoR process had an effect on whether a participant ultimately engaged with genetic counseling (P = .0052). CONCLUSION: The real-life experience of the multiarm eMERGE3 RoR study for returning actionable genomic results to consented research participants showed the impact of consent, method of disclosure, and genetic counseling on RoR.


Subject(s)
Genome , Genomics , Disclosure , Genetic Counseling , Humans , Population Groups
10.
J Genet Couns ; 31(2): 447-458, 2022 04.
Article in English | MEDLINE | ID: mdl-34665896

ABSTRACT

The public health impact of genomic screening can be enhanced by cascade testing. However, cascade testing depends on communication of results to family members. While the barriers and facilitators of family communication have been researched following clinical genetic testing, the factors impacting the dissemination of genomic screening results are unknown. Using the pragmatic Electronic Medical Records and Genomics Network-3 (eMERGE-3) study, we explored the reported sharing practices of participants who underwent genomic screening across the United States. Six eMERGE-3 sites returned genomic screening results for mostly dominant medically actionable disorders and surveyed adult participants regarding communication of results with first-degree relatives. Across the sites, 279 participants completed a 1-month and/or 6-month post-results survey. By 6 months, only 34% of the 156 respondents shared their results with all first-degree relatives and 4% did not share with any. Over a third (39%) first-degree relatives were not notified of the results. Half (53%) of participants who received their results from a genetics provider shared them with all first-degree relatives compared with 11% of participants who received their results from a non-genetics provider. The most frequent reasons for sharing were a feeling of obligation (72%) and that the information could help family members make medical decisions (72%). The most common reasons indicated for not sharing were that the family members were too young (38%), or they were not in contact (25%) or not close to them (25%). These data indicate that the professional returning the results may impact sharing patterns, suggesting that there is a need to continue to educate healthcare providers regarding approaches to facilitate sharing of genetic results within families. Finally, these data suggest that interventions to increase sharing may be universally effective regardless of the origin of the genetic result.


Subject(s)
Family , Genomics , Communication , Genetic Testing/methods , Humans , Surveys and Questionnaires , United States
11.
J Natl Compr Canc Netw ; 19(10): 1122-1132, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34666312

ABSTRACT

Identifying individuals with hereditary syndromes allows for timely cancer surveillance, opportunities for risk reduction, and syndrome-specific management. Establishing criteria for hereditary cancer risk assessment allows for the identification of individuals who are carriers of pathogenic genetic variants. The NCCN Guidelines for Genetic/Familial High-Risk Assessment: Colorectal provides recommendations for the assessment and management of patients at risk for or diagnosed with high-risk colorectal cancer syndromes. The NCCN Genetic/Familial High-Risk Assessment: Colorectal panel meets annually to evaluate and update their recommendations based on their clinical expertise and new scientific data. These NCCN Guidelines Insights focus on familial adenomatous polyposis (FAP)/attenuated familial adenomatous polyposis (AFAP) syndrome and considerations for management of duodenal neoplasia.


Subject(s)
Adenomatous Polyposis Coli , Colorectal Neoplasms , Adenomatous Polyposis Coli/diagnosis , Adenomatous Polyposis Coli/genetics , Adenomatous Polyposis Coli/therapy , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , Heterozygote , Humans , Risk Factors
12.
JAMA Netw Open ; 4(8): e2119084, 2021 08 02.
Article in English | MEDLINE | ID: mdl-34347061

ABSTRACT

Importance: Multiple polygenic risk scores (PRSs) for breast cancer have been developed from large research consortia; however, their generalizability to diverse clinical settings is unknown. Objective: To examine the performance of previously developed breast cancer PRSs in a clinical setting for women of European, African, and Latinx ancestry. Design, Setting, and Participants: This cohort study using the Electronic Medical Records and Genomics (eMERGE) network data set included 39 591 women from 9 contributing medical centers in the US that had electronic medical records (EMR) linked to genotype data. Breast cancer cases and controls were identified through a validated EMR phenotyping algorithm. Main Outcomes and Measures: Multivariable logistic regression was used to assess the association between breast cancer risk and 7 previously developed PRSs, adjusting for age, study site, breast cancer family history, and first 3 ancestry informative principal components. Results: This study included 39 591 women: 33 594 with European, 3801 with African, and 2196 with Latinx ancestry. The mean (SD) age at breast cancer diagnosis was 60.7 (13.0), 58.8 (12.5), and 60.1 (13.0) years for women with European, African, and Latinx ancestry, respectively. PRSs derived from women with European ancestry were associated with breast cancer risk in women with European ancestry (highest odds ratio [OR] per 1-SD increase, 1.46; 95% CI, 1.41-1.51), women with Latinx ancestry (highest OR, 1.31; 95% CI, 1.09-1.58), and women with African ancestry (OR, 1.19; 95% CI, 1.05-1.35). For women with European ancestry, this association with breast cancer risk was largest in the extremes of the PRS distribution, with ORs ranging from 2.19 (95% CI, 1.84-2.53) to 2.48 (95% CI, 1.89-3.25) for the 3 different PRSs examined for those in the highest 1% of the PRS compared with those in the middle quantile. Among women with Latinx and African ancestries at the extremes of the PRS distribution, there were no statistically significant associations. Conclusions and Relevance: This cohort study found that PRS models derived from women with European ancestry for breast cancer risk generalized well for women with European, Latinx, and African ancestries across different clinical settings, although the effect sizes for women with African ancestry were smaller, likely because of differences in risk allele frequencies and linkage disequilibrium patterns. These results highlight the need to improve representation of diverse population groups, particularly women with African ancestry, in genomic research cohorts.


Subject(s)
Black People/genetics , Breast Neoplasms/ethnology , Genetic Predisposition to Disease/ethnology , Hispanic or Latino/genetics , White People/genetics , Algorithms , Breast Neoplasms/genetics , Electronic Health Records , Female , Gene Frequency , Genomics , Humans , Information Storage and Retrieval , Linkage Disequilibrium , Logistic Models , Middle Aged , Odds Ratio , Phenotype , Risk Factors
13.
JNCI Cancer Spectr ; 5(4)2021 08.
Article in English | MEDLINE | ID: mdl-34377931

ABSTRACT

Background: Unbiased estimates of penetrance are challenging but critically important to make informed choices about strategies for risk management through increased surveillance and risk-reducing interventions. Methods: We studied the penetrance and clinical outcomes of 7 breast cancer susceptibility genes (BRCA1, BRCA2, TP53, CHEK2, ATM, PALB2, and PTEN) in almost 13 458 participants unselected for personal or family history of breast cancer. We identified 242 female participants with pathogenic or likely pathogenic variants in 1 of the 7 genes for penetrance analyses, and 147 women did not previously know their genetic results. Results: Out of the 147 women, 32 women were diagnosed with breast cancer at an average age of 52.8 years. Estimated penetrance by age 60 years ranged from 17.8% to 43.8%, depending on the gene. In clinical-impact analysis, 42.3% (95% confidence interval = 31.3% to 53.3%) of women had taken actions related to their genetic results, and 2 new breast cancer cases were identified within the first 12 months after genetic results disclosure. Conclusions: Our study provides population-based penetrance estimates for the understudied genes CHEK2, ATM, and PALB2 and highlights the importance of using unselected populations for penetrance studies. It also demonstrates the potential clinical impact of genetic testing to improve health care through early diagnosis and preventative screening.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Penetrance , Adult , Ataxia Telangiectasia Mutated Proteins/genetics , Breast Neoplasms/diagnosis , Checkpoint Kinase 2/genetics , Confidence Intervals , Fanconi Anemia Complementation Group N Protein/genetics , Female , Genes, BRCA1 , Genes, BRCA2 , Genes, p53 , Genetic Testing , Humans , Kaplan-Meier Estimate , Middle Aged , PTEN Phosphohydrolase/genetics
14.
Oncologist ; 26(11): e1962-e1970, 2021 11.
Article in English | MEDLINE | ID: mdl-34390291

ABSTRACT

BACKGROUND: Over the past few years, tumor next-generation sequencing (NGS) panels have evolved in complexity and have changed from selected gene panels with a handful of genes to larger panels with hundreds of genes, sometimes in combination with paired germline filtering and/or testing. With this move toward increasingly large NGS panels, we have rapidly outgrown the available literature supporting the utility of treatments targeting many reported gene alterations, making it challenging for oncology providers to interpret NGS results and make a therapy recommendation for their patients. METHODS: To support the oncologists at Vanderbilt-Ingram Cancer Center (VICC) in interpreting NGS reports for patient care, we initiated two molecular tumor boards (MTBs)-a VICC-specific institutional board for our patients and a global community MTB open to the larger oncology patient population. Core attendees include oncologists, hematologist, molecular pathologists, cancer geneticists, and cancer genetic counselors. Recommendations generated from MTB were documented in a formal report that was uploaded to our electronic health record system. RESULTS: As of December 2020, we have discussed over 170 patient cases from 77 unique oncology providers from VICC and its affiliate sites, and a total of 58 international patient cases by 25 unique providers from six different countries across the globe. Breast cancer and lung cancer were the most presented diagnoses. CONCLUSION: In this article, we share our learning from the MTB experience and document best practices at our institution. We aim to lay a framework that allows other institutions to recreate MTBs. IMPLICATIONS FOR PRACTICE: With the rapid pace of molecularly driven therapies entering the oncology care spectrum, there is a need to create resources that support timely and accurate interpretation of next-generation sequencing reports to guide treatment decision for patients. Molecular tumor boards (MTB) have been created as a response to this knowledge gap. This report shares implementation strategies and best practices from the Vanderbilt experience of creating an institutional MTB and a virtual global MTB for the larger oncology community. This report describe a reproducible framework that can be adopted to initiate MTBs at other institutions.


Subject(s)
Neoplasms , Humans , National Cancer Institute (U.S.) , Neoplasms/genetics , Neoplasms/therapy , United States
15.
Genet Med ; 23(10): 1838-1846, 2021 10.
Article in English | MEDLINE | ID: mdl-34257418

ABSTRACT

PURPOSE: Genomic medicine holds great promise for improving health care, but integrating searchable and actionable genetic data into electronic health records (EHRs) remains a challenge. Here we describe Neptune, a system for managing the interaction between a clinical laboratory and an EHR system during the clinical reporting process. METHODS: We developed Neptune and applied it to two clinical sequencing projects that required report customization, variant reanalysis, and EHR integration. RESULTS: Neptune has been applied for the generation and delivery of over 15,000 clinical genomic reports. This work spans two clinical tests based on targeted gene panels that contain 68 and 153 genes respectively. These projects demanded customizable clinical reports that contained a variety of genetic data types including single-nucleotide variants (SNVs), copy-number variants (CNVs), pharmacogenomics, and polygenic risk scores. Two variant reanalysis activities were also supported, highlighting this important workflow. CONCLUSION: Methods are needed for delivering structured genetic data to EHRs. This need extends beyond developing data formats to providing infrastructure that manages the reporting process itself. Neptune was successfully applied on two high-throughput clinical sequencing projects to build and deliver clinical reports to EHR systems. The software is open source and available at https://gitlab.com/bcm-hgsc/neptune .


Subject(s)
Genomics , Neptune , Electronic Health Records , High-Throughput Nucleotide Sequencing , Humans , Software
16.
J Community Genet ; 12(1): 129-136, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33389527

ABSTRACT

Increased access to genetic counseling services is of prime importance in minority and underserved populations where genetic testing is currently underutilized. Our study tested a point of care screening tool to identify high-risk low-income patients for genetic counseling in a busy county hospital oncology clinic. Eligible breast patients treated at a "safety-net" hospital, were scored into 'high-risk' (> or = 6) or 'low-risk' (< 6) groups using a screening tool on personal and family history of cancer. Genetic counseling and testing were provided at the Vanderbilt Hereditary Cancer Program (VHCP) to all 'high-risk' and some 'low-risk' participants considered to need genetic counseling by their oncologist. Ninety-nine women with a history of breast cancer were enrolled onto the study over a period of 26 months. 53.5% (53/99) had a 'high-risk' score and ethnic predominance of African-American (60.4%). Of these, 67.9% (36/53) were counseled, and 91.6% (33/36) tested with a 9% (3/33) mutation positive rate. In the 'low-risk' group, 28.2% (13/46) still met current NCCN guidelines and were referred by their oncologist. 69.2% (9/13) were counseled and tested. The 'low-risk' group of predominantly Caucasian (41.3%) participants carried a 20% (2/10) mutation positive rate; which was later adjusted to 10% to exclude a mutation not conferring a strong breast cancer risk. The screening tool was well accepted by patients; and increased access to genetic counseling. There was a subset of breast cancer affected women under 45 with no reported family history that failed to be identified. Minor alterations to the tool would enhance concordance with current NCCN guidelines.

17.
J Natl Compr Canc Netw ; 18(7): 841-847, 2020 07.
Article in English | MEDLINE | ID: mdl-32634774

ABSTRACT

BACKGROUND: Increasing demand for genetic testing for inherited cancer risk coupled with a shortage of providers trained in genetics highlight the potential for automated tools embedded in the clinic process to meet this demand. We developed and tested a scalable, easy-to-use, 12-minute web-based educational tool that included standard pretest genetic counseling elements related to panel-based testing for multiple genes associated with cancer risk. METHODS: The tool was viewed by new patients at the Vanderbilt Hereditary Cancer Clinic before meeting with a board-certified genetics professional. Pre- and post-tool surveys measured knowledge, feeling informed/empowered to decide about testing, attitudinal values about genetic testing, and health literacy. Of the initial 100 participants, 50 were randomized to only have knowledge measured on the post-tool survey to assess for a priming effect. RESULTS: Of 360 patients approached, 305 consented and completed both the pre- and post-tool surveys, with a mean age of 47 years, including 80% female patients and 48% patients with cancer. Survey results showed an increase in knowledge and feeling informed/empowered after viewing the tool (P<.001), but no significant change in attitude (P=.64). Post-tool survey data indicated no difference in median knowledge between low and high health literacy groups (P=.30). No priming effect was present among the initial 100 participants (P=.675). CONCLUSIONS: Viewing the educational tool resulted in significant gains in knowledge across health literacy levels, and most individuals felt informed and empowered to decide about genetic testing. These findings indicate that the use of an automated pretest genetic counseling tool may help streamline the delivery of genetic services.


Subject(s)
Genetic Counseling , Neoplasms , Female , Genetic Testing , Humans , Internet , Male , Middle Aged , Neoplasms/genetics , Risk
18.
Am J Hum Genet ; 106(5): 707-716, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32386537

ABSTRACT

Because polygenic risk scores (PRSs) for coronary heart disease (CHD) are derived from mainly European ancestry (EA) cohorts, their validity in African ancestry (AA) and Hispanic ethnicity (HE) individuals is unclear. We investigated associations of "restricted" and genome-wide PRSs with CHD in three major racial and ethnic groups in the U.S. The eMERGE cohort (mean age 48 ± 14 years, 58% female) included 45,645 EA, 7,597 AA, and 2,493 HE individuals. We assessed two restricted PRSs (PRSTikkanen and PRSTada; 28 and 50 variants, respectively) and two genome-wide PRSs (PRSmetaGRS and PRSLDPred; 1.7 M and 6.6 M variants, respectively) derived from EA cohorts. Over a median follow-up of 11.1 years, 2,652 incident CHD events occurred. Hazard and odds ratios for the association of PRSs with CHD were similar in EA and HE cohorts but lower in AA cohorts. Genome-wide PRSs were more strongly associated with CHD than restricted PRSs were. PRSmetaGRS, the best performing PRS, was associated with CHD in all three cohorts; hazard ratios (95% CI) per 1 SD increase were 1.53 (1.46-1.60), 1.53 (1.23-1.90), and 1.27 (1.13-1.43) for incident CHD in EA, HE, and AA individuals, respectively. The hazard ratios were comparable in the EA and HE cohorts (pinteraction = 0.77) but were significantly attenuated in AA individuals (pinteraction= 2.9 × 10-3). These results highlight the potential clinical utility of PRSs for CHD as well as the need to assemble diverse cohorts to generate ancestry- and ethnicity PRSs.


Subject(s)
Black or African American/genetics , Coronary Disease/genetics , Genetic Predisposition to Disease , Hispanic or Latino/genetics , Multifactorial Inheritance/genetics , White People/genetics , Cohort Studies , Female , Humans , Male , Middle Aged , Odds Ratio
19.
J Pers Med ; 10(2)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349224

ABSTRACT

A goal of the 3rd phase of the Electronic Medical Records and Genomics (eMERGE3) Network was to examine the return of results (RoR) of actionable variants in more than 100 genes to consenting participants and their healthcare providers. Each of the 10 eMERGE sites developed plans for three essential elements of the RoR process: Disclosure to the participant, notification of the health care provider, and integration of results into the electronic health record (EHR). Procedures and protocols around these three elements were adapted as appropriate to individual site requirements and limitations. Detailed information about the RoR procedures at each site was obtained through structured telephone interviews and follow-up surveys with the clinical investigator leading or participating in the RoR process at each eMERGE3 institution. Because RoR processes at each of the 10 sites allowed for taking into account differences in population, disease focus and institutional requirements, significant heterogeneity of process was identified, including variability in the order in which patients and clinicians were notified and results were placed in the EHR. This heterogeneity in the process flow for eMERGE3 RoR reflects the "real world" of genomic medicine in which RoR procedures must be shaped by the needs of the patients and institutional environments.

20.
Mol Genet Genomic Med ; 8(7): e1275, 2020 07.
Article in English | MEDLINE | ID: mdl-32329193

ABSTRACT

BACKGROUND: Little is known about the impact of reclassification on patients' perception of medical uncertainty or trust in genetics-based clinical care. METHODS: Semistructured telephone interviews were conducted with 20 patients who had received a reclassified genetic test result related to hereditary cancer. All participants had undergone genetic counseling and testing for cancer susceptibility at Vanderbilt-Ingram Cancer Center Hereditary Cancer Clinic within the last six years. RESULTS: Most of the participants did not express distress related to the variant reclassification and only a minority expressed a decrease in trust in medical genetics. However, recall of the new interpretation was limited, even though all participants were recontacted by letter, phone, or clinic visit. CONCLUSION: Reclassification of genetic tests is an important issue in modern healthcare because changes in interpretation have the potential to alter previously recommended management. Participants in this study did not express strong feelings of mistrust or doubt about their genetic evaluation. However, there was a low level of comprehension and information retention related to the updated report. Future research can build on this study to improve communication with patients about their reclassified results.


Subject(s)
Attitude , Genetic Counseling/psychology , Genetic Predisposition to Disease/classification , Neoplasms/genetics , Patients/psychology , Adult , Aged , Comprehension , Female , Genetic Predisposition to Disease/psychology , Genetic Testing/methods , Humans , Male , Middle Aged , Surveys and Questionnaires
SELECTION OF CITATIONS
SEARCH DETAIL
...