Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Protoc ; 18(11): 3534-3564, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37816903

ABSTRACT

Despite the increasing concern about the harmful effects of micro- and nanoplastics (MNPs), there are no harmonized guidelines or protocols yet available for MNP ecotoxicity testing. Current ecotoxicity studies often use commercial spherical particles as models for MNPs, but in nature, MNPs occur in variable shapes, sizes and chemical compositions. Moreover, protocols developed for chemicals that dissolve or form stable dispersions are currently used for assessing the ecotoxicity of MNPs. Plastic particles, however, do not dissolve and also show dynamic behavior in the exposure medium, depending on, for example, MNP physicochemical properties and the medium's conditions such as pH and ionic strength. Here we describe an exposure protocol that considers the particle-specific properties of MNPs and their dynamic behavior in exposure systems. Procedure 1 describes the top-down production of more realistic MNPs as representative of MNPs in nature and particle characterization (e.g., using thermal extraction desorption-gas chromatography/mass spectrometry). Then, we describe exposure system development for short- and long-term toxicity tests for soil (Procedure 2) and aquatic (Procedure 3) organisms. Procedures 2 and 3 explain how to modify existing ecotoxicity guidelines for chemicals to target testing MNPs in selected exposure systems. We show some examples that were used to develop the protocol to test, for example, MNP toxicity in marine rotifers, freshwater mussels, daphnids and earthworms. The present protocol takes between 24 h and 2 months, depending on the test of interest and can be applied by students, academics, environmental risk assessors and industries.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Microplastics/analysis , Microplastics/toxicity , Plastics/toxicity , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/toxicity
2.
Microorganisms ; 9(9)2021 Sep 03.
Article in English | MEDLINE | ID: mdl-34576771

ABSTRACT

The concept of a 'plastisphere microbial community' arose from research on aquatic plastic debris, while the effect of plastics on microbial communities in soils remains poorly understood. Therefore, we examined the inhabiting microbial communities of two plastic debris ecosystems with regard to their diversity and composition relative to plastic-free soils from the same area using 16S rRNA amplicon sequencing. Furthermore, we studied the plastic-colonizing potential of bacteria originating from both study sites as a measure of surface adhesion to UV-weathered polyethylene (PE) using high-magnification field emission scanning electron microscopy (FESEM). The high plastic content of the soils was associated with a reduced alpha diversity and a significantly different structure of the microbial communities. The presence of plastic debris in soils did not specifically enrich bacteria known to degrade plastic, as suggested by earlier studies, but rather shifted the microbial community towards highly abundant autotrophic bacteria potentially tolerant to hydrophobic environments and known to be important for biocrust formation. The bacterial inoculates from both sites formed dense biofilms on the surface and in micrometer-scale surface cracks of the UV-weathered PE chips after 100 days of in vitro incubation with visible threadlike EPS structures and cross-connections enabling surface adhesion. High-resolution FESEM imaging further indicates that the microbial colonization catalyzed some of the surface degradation of PE. In essence, this study suggests the concept of a 'terrestrial plastisphere' as a diverse consortium of microorganisms including autotrophs and other pioneering species paving the way for those members of the consortium that may eventually break down the plastic compounds.

3.
Sci Rep ; 10(1): 6695, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317741

ABSTRACT

The adsorption of organic micropollutants onto activated carbon is a favourable solution for the treatment of drinking water and wastewater. However, these adsorption processes are not sufficiently understood to allow for the appropriate prediction of removal processes. In this study, thermogravimetric analysis, alongside evolved gas analysis, is proposed for the characterisation of micropollutants adsorbed on activated carbon. Varying amounts of carbamazepine were adsorbed onto three different activated carbons, which were subsequently dried, and their thermal decomposition mechanisms examined. The discovery of 55 different pyrolysis products allowed differentiations to be made between specific adsorption sites and conditions. However, the same adsorption mechanisms were found for all samples, which were enhanced by inorganic constituents and oxygen containing surface groups. Furthermore, increasing the loadings led to the evolution of more hydrated decomposition products, whilst parts of the carbamazepine molecules were also integrated into the carbon structure. It was also found that the chemical composition, especially the degree of dehydration of the activated carbon, plays an important role in the adsorption of carbamazepine. Hence, it is thought that the adsorption sites may have a higher adsorption energy for specific adsorbates, when the activated carbon can then potentially increase its degree of graphitisation.

SELECTION OF CITATIONS
SEARCH DETAIL
...