Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 99, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997075

ABSTRACT

Abdominal aortic aneurysm (AAA) formation and expansion is highly complex and multifactorial, and the improvement of animal models is an important step to enhance our understanding of AAA pathophysiology. In this study, we explore our ability to influence aneurysm growth in a topical elastase plus ß-Aminopropionitrile (BAPN) mouse model by varying elastase concentration and by altering the cross-linking capability of the tissue. To do so, we assess both chronic and acute effects of elastase concentration using volumetric ultrasound. Our results suggest that the applied elastase concentration affects initial elastin degradation, as well as long-term vessel expansion. Additionally, we assessed the effects of BAPN by (1) removing it to restore the cross-linking capability of tissue after aneurysm formation and (2) adding it to animals with stable aneurysms to interrupt cross-linking. These results demonstrate that, even after aneurysm formation, lysyl oxidase inhibition remains necessary for continued expansion. Removing BAPN reduces the aneurysm growth rate to near zero, resulting in a stable aneurysm. In contrast, adding BAPN causes a stable aneurysm to expand. Altogether, these results demonstrate the ability of elastase concentration and BAPN to modulate aneurysm growth rate and severity. The findings open several new areas of investigation in a murine model that mimics many aspects of human AAA.


Subject(s)
Aminopropionitrile , Aorta, Abdominal/enzymology , Aortic Aneurysm, Abdominal/chemically induced , Pancreatic Elastase , Protein-Lysine 6-Oxidase/antagonists & inhibitors , Administration, Topical , Animals , Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/enzymology , Aortic Aneurysm, Abdominal/pathology , Dilatation, Pathologic , Disease Models, Animal , Disease Progression , Female , Male , Mice, Inbred C57BL , Protein-Lysine 6-Oxidase/metabolism , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL
...