Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Pharm Sci ; 108(1): 755-762, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30237029

ABSTRACT

In the past, analysis of micron-sized (>1.0 µm) aggregates of therapeutic proteins has been limited to light obscuration (LO), and appropriate quantitative methods of evaluating protein aggregates need to be developed. Recently, novel methods with enhanced reliability and sensitivity, such as nanoparticle tracking analysis (NTA), resonant mass measurement (RMM), and flow imaging (FI), have emerged. We have found that quantitative laser diffraction (qLD) is also effective for quantitative evaluation of protein aggregates over a wide size range. However, the different detection principles of the methods potentially lead to inconsistencies in results. This study aimed to compare particle size distributions and concentrations of protein aggregates using the orthogonal methods. Protein aggregates were generated by stirring an immunoglobulin solution. Serial dilutions of the aggregates stock were analyzed by RMM, FI, and qLD to obtain the particle size distribution and concentration using each method. In addition, size distribution of a protein aggregates solution was compared by RMM, NTA, FI, LO, and qLD. Both particle size distribution and concentration were in good agreement between RMM and qLD (0.3-2 µm) and between FI and qLD (2-20 µm). Thus, we concluded that qLD enables covering of the overlapping particle size range between RMM and FI.


Subject(s)
Nanoparticles/chemistry , Protein Aggregates/physiology , Proteins/chemistry , Immunoglobulins/chemistry , Lasers , Light , Particle Size , Reproducibility of Results , Solutions/chemistry
2.
AAPS J ; 15(4): 1200-11, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23996547

ABSTRACT

Flow imaging microscopy was introduced as a technique for protein particle analysis a few years ago and has strongly gained in importance ever since. The aim of the present study was a comparative evaluation of four of the most relevant flow imaging microscopy systems for biopharmaceuticals on the market: Micro-Flow Imaging (MFI)4100, MFI5200, Flow Cytometer And Microscope (FlowCAM) VS1, and FlowCAM PV. Polystyrene standards, particles generated from therapeutic monoclonal antibodies, and silicone oil droplets were analyzed by all systems. The performance was critically assessed regarding quantification, characterization, image quality, differentiation of protein particles and silicone oil droplets, and handling of the systems. The FlowCAM systems, especially the FlowCAM VS1, showed high-resolution images. The FlowCAM PV system provided the most precise quantification of particles of therapeutic monoclonal antibodies, also under impaired optical conditions by an increased refractive index of the formulation. Furthermore, the most accurate differentiation of protein particles and silicone oil droplets could be achieved with this instrument. The MFI systems provided excellent size and count accuracy (evaluated with polystyrene standards) especially the MFI5200 system. This instrument also showed very good performance for protein particles, also in case of an increased refractive index of the formulation. Both MFI systems were easier to use and appeared more standardized regarding measurement and data analysis as compared to the FlowCAM systems. Our study shows that the selection of the appropriate flow imaging microscopy system depends strongly on the main output parameters of interest and it is recommended to decide based on the intended application.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/analysis , Flow Cytometry/standards , Particle Size , Antibodies, Monoclonal, Murine-Derived/metabolism , Flow Cytometry/methods , Microscopy/methods , Microscopy/standards , Rituximab
3.
J Pharm Sci ; 102(7): 2152-65, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23625851

ABSTRACT

Our study aimed to comparatively evaluate Micro-Flow Imaging (MFI) and the recently introduced technique of resonant mass measurement (Archimedes, RMM) as orthogonal methods for the quantitative differentiation of silicone oil droplets and protein particles. This distinction in the submicron and micron size range is highly relevant for the development of biopharmaceuticals, in particular for products in prefilled syringes. Samples of artificially generated silicone oil droplets and protein particles were quantified individually and in defined mixtures to assess the performance of the two techniques. The built-in MFI software solution proved to be suitable to discriminate between droplets and particles for sizes above 2 µm at moderate droplet/particle ratios (70:30-30:70). A customized filter developed specifically for this study greatly improved the results and enabled reliable discrimination also for more extreme mixing ratios (95:5-15:85). RMM showed highly accurate discrimination in the size range of about 0.5-2 µm independent of the ratio, provided that a sufficient number of particles (>50 counted particles) were counted. We recommend applying both techniques for a comprehensive analysis of biotherapeutics potentially containing silicone oil droplets and protein particles in the submicron and micron size range.


Subject(s)
Proteins/isolation & purification , Silicone Oils/isolation & purification , Image Processing, Computer-Assisted , Particle Size , Software
4.
Eur J Pharm Biopharm ; 85(3 Pt B): 1084-7, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23454051

ABSTRACT

The draft for a new United States Pharmacopoeia (USP) monograph {787} "Sub-visible Particulate Matter in Therapeutic Protein Injections" describes the analysis of sub-visible particles by light obscuration at much lower sample volumes as so far required by the European Pharmacopoeia (Ph. Eur.) and the USP for parenterals in general. Our aim was to show the feasibility of minimizing the sample expenditure required for light obscuration similar to the new USP settings for standards and pharmaceutically relevant samples (both proteins and small molecules), without compromising the data quality. The light obscuration method was downscaled from >20 ml volume as so far specified in Ph. Eur./USP to 1 ml total sample volume. Comparable results for the particle concentration in all tested size classes were obtained with both methods for polystyrene standards, stressed BSA solutions, recombinant human IgG1 formulations, and pantoprazol i.v. solution. An additional advantage of the low volume method is the possibility to detect vial-to-vial variations, which are leveled out when pooling several vials to achieve sufficient volume for the Ph. Eur./USP method. This is in particular important for biotech products where not only the general quality aspect, but also aggregate formation of the drug substance is monitored by light obscuration.


Subject(s)
Immunoglobulin G/chemistry , Infusions, Parenteral , Pharmaceutical Solutions/analysis , Technology, Pharmaceutical/methods , 2-Pyridinylmethylsulfinylbenzimidazoles/chemistry , Animals , Cattle , Chemistry, Pharmaceutical/methods , Drug Contamination , Feasibility Studies , Humans , Light , Pantoprazole , Particle Size , Polystyrenes/chemistry , Proteins/chemistry , Reproducibility of Results , Serum Albumin, Bovine/chemistry
5.
J Pharm Sci ; 102(5): 1434-46, 2013 May.
Article in English | MEDLINE | ID: mdl-23463514

ABSTRACT

The aim of the present study was to quantitatively assess the relevance of transparency and refractive index (RI) on protein particle analysis by the light-based techniques light obscuration (LO) and Micro-Flow Imaging (MFI). A novel method for determining the RI of protein particles was developed and provided an RI of 1.41 for protein particles from two different proteins. An increased RI of the formulation by high protein concentration and/or sugars at pharmaceutically relevant levels was shown to lead to a significant underestimation of the subvisible particle concentration determined by LO and MFI. An RI match even caused particles to become "invisible" for the system, that is, not detectable anymore by LO and MFI. To determine the influence of formulation RI on particle measurements, we suggest the use of polytetrafluoroethylene (PTFE) particles to test a specific formulation for RI effects. In case of RI influences, we recommend also using a light-independent technique such as resonant mass measurement (RMM) (Archimedes) for subvisible particle analysis in protein formulations.


Subject(s)
Antibodies, Monoclonal, Murine-Derived/chemistry , Antibodies, Monoclonal/chemistry , Immunoglobulin G/chemistry , Receptors, Tumor Necrosis Factor/chemistry , Serum Albumin/chemistry , Etanercept , Humans , Infliximab , Light , Particle Size , Refractometry , Rituximab , Scattering, Radiation
6.
J Control Release ; 166(1): 22-9, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23246469

ABSTRACT

Thermosensitive liposomes (TSL) with encapsulated magnetic resonance imaging (MRI) longitudinal relaxation time (T(1)) contrast agents (CAs) have been proposed for MRI assisted interventional thermotherapy in solid tumors. Here the feasibility of 6 clinically approved CAs (Gd-DTPA, Gd-BOPTA, Gd-DOTA, Gd-BT-DO3A, Gd-DTPA-BMA, and Gd-HP-DO3A) for formulation into TSL was investigated. CAs were passively encapsulated with 323 mOs kg(-1) into 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-distearoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phosphodiglycerol 50/20/30 (mol/mol) TSL (DPPG(2)-TSL) to obtain stable formulations. T(1) relaxivity (r(1)) and diffusive permeability to water (P(d)) across the membrane were determined. Shelf life at 4°C was investigated by determining lysolipid content up to 10 weeks after preparation. All preparations were monodispersed with comparable small vesicle sizes (~135 nm). Neither zeta potential nor phase transition temperature (T(m)) was affected by the CA. The formulations showed an increase in r(1) in the temperature range between 38 and 44°C. This correlated with the phase transition. Change in r(1) (Δr(1)=r(1)(45.3°C)-r(1)(37.6°C)) and r(1) (T

Subject(s)
Contrast Media/administration & dosage , Drug Carriers/chemistry , Gadolinium DTPA/administration & dosage , Magnetic Resonance Imaging , Phosphatidylglycerols/chemistry , 1,2-Dipalmitoylphosphatidylcholine/analogs & derivatives , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Contrast Media/chemistry , Drug Compounding , Gadolinium DTPA/chemistry , Liposomes , Particle Size , Phosphatidylcholines/chemistry , Surface Properties , Transition Temperature
7.
Eur J Pharm Biopharm ; 83(3): 449-59, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23159708

ABSTRACT

Lyophilization is an important and well-established pharmaceutical drying process. Product temperature is the most critical process parameter during lyophilization as it impacts both product quality and process efficiency. Traditionally, thermocouples (TCs) or resistance temperature detectors (RTDs) and recently, manometric temperatures measurements (MTMs) have been used to monitor the product temperature. But, all of these techniques have several drawbacks. The objective of this study was the implementation and evaluation of an optical fiber system as novel process monitoring tool during lyophilization. Therefore, temperature profiles of mannitol, sucrose, or trehalose were recorded with various prototypes of the optical fiber sensors (OFSs) and compared to data obtained with conventional TCs or Pirani/capacitance manometry with respect to the endpoint of primary drying. The OFS allowed easy handling and easy center bottom positioning. Data obtained with the OFS in contact with product were in good agreement with data obtained via TCs or Pirani/capacitance manometry. The OFSs showed significantly higher sensitivity, faster response, and better resolution compared to TCs. This allowed for the detection of additional excipient crystallization events. It was found that force effects on unshielded sensors enabled to detect glass transitions. Three-dimensional temperature profiles were obtained with an OFS helix configuration. The possible integration of a glass fiber with several OFSs in series into the shelf surface enables non-invasive, automatic loading compatible monitoring of the drying process. In conclusion, these advantages turn the novel optical fiber systems into a highly attractive process monitoring tool during lyophilization.


Subject(s)
Freeze Drying , Optical Fibers , Calibration , Calorimetry, Differential Scanning , Crystallization , Evaluation Studies as Topic , Freezing , Hot Temperature
8.
J Pharm Sci ; 101(3): 895-913, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22083792

ABSTRACT

The scope of this paper is to review approaches used for forced degradation (synonym, stress testing) of therapeutic proteins. Forced degradation studies play a central role in the development of therapeutic proteins, for example, for candidate selection, molecule characterization, formulation development, assay development, and comparability studies. Typical stress methods are addressed within this review, such as exposure to elevated temperatures, freeze-thawing, mechanical stress, oxidation, light, as well as various materials and devices used in the clinics during final administration. Stability testing is briefly described as far as relevant to the discussion of forced degradation studies. Whereas stability-testing requirements are defined in regulatory guidelines, standard procedures for forced degradation of therapeutic proteins are largely unavailable, except for photostability. Possible selection criteria to identify appropriate stress conditions and recommendations for setting up forced degradation studies for the different phases of development of therapeutic proteins are presented.


Subject(s)
Drug Stability , Protein Stability , Proteins/chemistry , Chemistry, Pharmaceutical/methods , Oxidation-Reduction , Protein Conformation , Proteins/therapeutic use , Stress, Mechanical , Temperature
9.
J Pharm Sci ; 101(3): 914-35, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22161573

ABSTRACT

The presence of particles is a major issue during therapeutic protein formulation development. Both proteinaceous and nonproteinaceous particles need to be analyzed not only due to the requirements of the Pharmacopeias but also to monitor the stability of the protein formulation. Increasing concerns about the immunogenic potential together with new developments in particle analysis make a comparative description of established and novel analytical methods useful. Our review aims to provide a comprehensive overview on analytical methods for the detection and characterization of visible and subvisible particles in therapeutic protein formulations. We describe the underlying theory, benefits, shortcomings, and illustrative examples for quantification techniques, as well as characterization techniques for particle shape, morphology, structure, and identity.


Subject(s)
Chemistry, Pharmaceutical/methods , Particle Size , Proteins/chemistry , Pharmaceutical Preparations/chemistry , Protein Stability
10.
J Control Release ; 147(3): 436-43, 2010 Nov 01.
Article in English | MEDLINE | ID: mdl-20727921

ABSTRACT

Thermosensitive liposomes (TSL) in combination with regional hyperthermia represent a powerful tool for tumor specific drug delivery. The objective of this study was to investigate the influence of vesicle size on the biophysical properties of TSL. TSL were composed of DPPC/DSPC/1,2-dipalmitoyl-sn-glycero-3-phosphoglyceroglycerol (DPPG(2)) 50:20:30 (mol/mol) (DPPG(2)-TSL) and DPPC/P-Lyso-PC/DSPE-PEG2000 90:10:4 (mol/mol) (PEG/Lyso-TSL) with encapsulated fluorescent dye carboxyfluorescein, anticancer drug doxorubicin or magnetic resonance contrast agent gadodiamide. Extrusion was performed with polycarbonate filters of distinct pore size to obtain TSL with different diameters (50 to 200nm). Phase transition temperature (T(m)) of the bilayer forming phospholipids was not influenced by vesicle size in the tested range. However, vesicle size had a major impact on in vitro content release properties of TSL in the investigated temperature range between 30 and 45°C. Generally, vesicle size was inversely related to content release properties with increased content release rates for decreased vesicle sizes. Size dependency of content release properties varied between all tested formulations and DPPG(2)-TSL were generally less affected by size changes in the range of 100 to 150nm as compared to PEG/Lyso-TSL. Independent from gadodiamide release, vesicle size influenced the signal intensity of DPPG(2)-TSL also at temperatures below T(m) due to improved water exchange for smaller vesicles. Liposomes around 100nm in size are routinely used in vivo, hence a quality control for TSL preparations is required prior to use. Even small changes in size or a wider size distribution might affect stability and release properties and thus yield in decreased efficacy or unwanted side effects of drug loaded TSL during in vivo applications.


Subject(s)
Antibiotics, Antineoplastic/chemistry , Contrast Media/chemistry , Doxorubicin/chemistry , Fluoresceins/chemistry , Fluorescent Dyes/chemistry , Gadolinium DTPA/chemistry , Phospholipids/chemistry , Temperature , Antibiotics, Antineoplastic/administration & dosage , Chemistry, Pharmaceutical , Doxorubicin/administration & dosage , Drug Compounding , Humans , Hyperthermia, Induced , Kinetics , Liposomes , Magnetic Resonance Spectroscopy , Nanotechnology , Particle Size , Permeability , Solubility , Surface Properties , Technology, Pharmaceutical/methods
11.
Biochim Biophys Acta ; 1768(10): 2491-9, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17618599

ABSTRACT

Recently, we reported that 1,2-dipalmitoyl-sn-glycero-3-phosphoglyceroglycerol (DPPGOG) prolongs the circulation time of thermosensitive liposomes (TSL). Since the only TSL formulation in clinical trials applies DSPE-PEG2000 and lysophosphatidylcholine (P-lyso-PC), the objective of this study was to compare the influence of these lipids with DPPGOG on in vitro stability and heat-induced drug release properties of TSL. The content release rate was significantly increased by incorporating DPPGOG or P-lyso-PC in TSL formulations. DPPC/DSPC/DPPGOG 50:20:30 (m/m) and DPPC/P-lyso-PC/DSPE-PEG2000 90:10:4 (m/m) did not differ significantly in their release rate of carboxyfluorescein with >70% being released within the first 10s at their phase transition temperature. Furthermore, DPPC/DSPC/DPPGOG showed an improved stability at 37 degrees C in serum compared to the PEGylated TSL. The in vitro properties of DPPGOG-containing TSL remained unchanged when encapsulating doxorubicin instead of carboxyfluorescein. The TSL retained 89.1+/-4.0% of doxorubicin over 3 h at 37 degrees C in the presence of serum. The drug was almost completely released within 120s at 42 degrees C. In conclusion, DPPGOG improves the in vitro properties in TSL formulations compared to DSPE-PEG2000, since it not only increases the in vivo half-life, it even increases the content release rate without negative effect on TSL stability at 37 degrees C which has been seen for DSPE-PEG2000/P-lyso-PC containing TSL.


Subject(s)
Glycerol/analogs & derivatives , Liposomes/chemistry , Palmitates/chemistry , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Drug Stability , Glycerol/chemistry , Lipid Bilayers/chemistry , Phosphatidylethanolamines , Polyethylene Glycols , Solubility , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...