Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Mol Genet ; 32(7): 1083-1089, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36300302

ABSTRACT

Auditory synaptopathy/neuropathy (AS/AN) is a distinct type of sensorineural hearing loss in which the cochlear sensitivity to sound (i.e. active cochlear amplification by outer hair cells) is preserved whereas sound encoding by inner hair cells and/or auditory nerve fibers is disrupted owing to genetic or environmental factors. Autosomal-dominant auditory neuropathy type 2 (AUNA2) was linked either to chromosomal bands 12q24 or 13q34 in a large German family in 2017. By whole-genome sequencing, we now detected a 5500 bp deletion in ATP11A on chromosome 13q34 segregating with the phenotype in this family. ATP11A encodes a P-type ATPase that translocates phospholipids from the exoplasmic to the cytoplasmic leaflet of the plasma membrane. The deletion affects both isoforms of ATP11A and activates a cryptic splice site leading to the formation of an alternative last exon. ATP11A carrying the altered C-terminus loses its flippase activity for phosphatidylserine. Atp11a is expressed in fibers and synaptic contacts of the auditory nerve and in the cochlear nucleus in mice, and conditional Atp11a knockout mice show a progressive reduction of the spiral ganglion neuron compound action potential, recapitulating the human phenotype of AN. By combining whole-genome sequencing, immunohistochemistry, in vitro functional assays and generation of a mouse model, we could thus identify a partial deletion of ATP11A as the genetic cause of AUNA2.


Subject(s)
Hearing Loss, Central , Hearing Loss, Sensorineural , Humans , Mice , Animals , Hearing Loss, Central/genetics , Hearing Loss, Sensorineural/genetics , Mutation , Hair Cells, Auditory, Inner , Chromosomes , ATP-Binding Cassette Transporters/genetics
2.
Oxid Med Cell Longev ; 2020: 4309605, 2020.
Article in English | MEDLINE | ID: mdl-32082478

ABSTRACT

We recently showed that blunt chest trauma reduced the expression of the myocardial oxytocin receptor (Oxtr), which was further aggravated by genetic deletion of the H2S-producing enzyme cystathionine γ-lyase (CSE). Exogenous H2S supplementation restored myocardial Oxtr expression under these conditions. Early life stress (ELS) is a risk factor for cardiovascular disease by affecting vascular and heart structures. Therefore, we tested the hypotheses that (i) ELS affects cardiac Oxtr and CSE expressions and (ii) Oxtr and CSE expression patterns depend on the duration of stress exposure. Thus, two stress paradigms were compared: long- and short-term separation stress (LTSS and STSS, respectively). Cardiac Oxtr expression was differentially affected by the two stress paradigms with a significant reduction after LTSS and a significant increase after STSS. CSE expression, which was significantly reduced in Oxtr-/- knockout hearts, was downregulated and directly related to Oxtr expression in LTSS hearts (r = 0.657, p = 0.012). In contrast, CSE expression was not related to Oxtr upregulation in STSS. Plasma Oxt levels were not affected by either ELS paradigm. The coincidence of LTSS-induced reduction of cardiac Oxtr and reduced CSE expression may suggest a novel pathophysiological link between early life adversities and increased risk for the development of cardiovascular disorders in adulthood.


Subject(s)
Cystathionine gamma-Lyase/metabolism , Oxytocin/blood , Receptors, Oxytocin/metabolism , Animals , Female , Heterozygote , Homozygote , Male , Maternal Deprivation , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocytes, Cardiac/metabolism , Oxytocin/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...