Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Braz. j. med. biol. res ; 44(9): 939-946, Sept. 2011.
Article in English | LILACS | ID: lil-599674

ABSTRACT

Heavy metals have been used in a wide variety of human activities that have significantly increased both professional and environmental exposure. Unfortunately, disasters have highlighted the toxic effects of metals on different organs and systems. Over the last 50 years, the adverse effects of chronic lead, mercury and gadolinium exposure have been underscored. Mercury and lead induce hypertension in humans and animals, affecting endothelial function in addition to their other effects. Increased cardiovascular risk after exposure to metals has been reported, but the underlying mechanisms, mainly for short periods of time and at low concentrations, have not been well explored. The presence of other metals such as gadolinium has raised concerns about contrast-induced nephropathy and, interestingly, despite this negative action, gadolinium has not been defined as a toxic agent. The main actions of these metals, demonstrated in animal and human studies, are an increase of free radical production and oxidative stress and stimulation of angiotensin I-converting enzyme activity, among others. Increased vascular reactivity, highlighted in the present review, resulting from these actions might be an important mechanism underlying increased cardiovascular risk. Finally, the results described in this review suggest that mercury, lead and gadolinium, even at low doses or concentrations, affect vascular reactivity. Acting via the endothelium, by continuous exposure followed by their absorption, they can increase the production of free radicals and of angiotensin II, representing a hazard for cardiovascular function. In addition, the actual reference values, considered to pose no risk, need to be reduced.


Subject(s)
Animals , Humans , Rats , Cardiovascular System/drug effects , Gadolinium/toxicity , Lead/toxicity , Mercury/toxicity , Adenosine Triphosphatases/chemistry , Cardiovascular Diseases/chemically induced , Endothelium, Vascular/drug effects , Free Radicals/chemistry , Free Radicals/metabolism , Metals, Heavy/poisoning , Poisoning , Risk Factors
2.
Braz J Med Biol Res ; 44(9): 939-46, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21845340

ABSTRACT

Heavy metals have been used in a wide variety of human activities that have significantly increased both professional and environmental exposure. Unfortunately, disasters have highlighted the toxic effects of metals on different organs and systems. Over the last 50 years, the adverse effects of chronic lead, mercury and gadolinium exposure have been underscored. Mercury and lead induce hypertension in humans and animals, affecting endothelial function in addition to their other effects. Increased cardiovascular risk after exposure to metals has been reported, but the underlying mechanisms, mainly for short periods of time and at low concentrations, have not been well explored. The presence of other metals such as gadolinium has raised concerns about contrast-induced nephropathy and, interestingly, despite this negative action, gadolinium has not been defined as a toxic agent. The main actions of these metals, demonstrated in animal and human studies, are an increase of free radical production and oxidative stress and stimulation of angiotensin I-converting enzyme activity, among others. Increased vascular reactivity, highlighted in the present review, resulting from these actions might be an important mechanism underlying increased cardiovascular risk. Finally, the results described in this review suggest that mercury, lead and gadolinium, even at low doses or concentrations, affect vascular reactivity. Acting via the endothelium, by continuous exposure followed by their absorption, they can increase the production of free radicals and of angiotensin II, representing a hazard for cardiovascular function. In addition, the actual reference values, considered to pose no risk, need to be reduced.


Subject(s)
Cardiovascular System/drug effects , Gadolinium/toxicity , Lead/toxicity , Mercury/toxicity , Adenosine Triphosphatases/chemistry , Animals , Cardiovascular Diseases/chemically induced , Endothelium, Vascular/drug effects , Free Radicals/chemistry , Free Radicals/metabolism , Heavy Metal Poisoning , Humans , Poisoning , Rats , Risk Factors
3.
J Physiol Pharmacol ; 61(1): 29-36, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20228412

ABSTRACT

We have previously demonstrated that chronic exposure to low-dose of mercury induced endothelial dysfunction and increased vasoconstrictor responses. The aim of this work was to investigate if mercury exposure alters contractile prostanoids production from cyclooxygenase-2 (COX-2) and its contribution to phenylephrine responses. For this, aortic segments from 3-month old Wistar rats daily treated with HgCl(2) (1(st) dose 4.6 microg/kg, subsequent dose 0.07 microg/kg/day, i.m.) or vehicle for 30 days were used. Mercury treatment did not affect systolic blood pressure but increased phenylephrine-induced vasoconstriction. The non selective COX inhibitor, indomethacin (10 micromol/l) reduced the response to phenylephrine more in aortic segments from mercury-treated than control rats. The selective COX-2 inhibitor NS 398 (1 micromol/l), the thromboxane A(2)/prostaglandin H(2) receptor (TP) antagonist SQ 29,548 (1 micromol/l), the TXA(2) synthase inhibitor furegrelate (1 micromol/l), the EP(1) receptor antagonist SC 19220 (1 micromol/l) and the AT(1) receptor antagonist losartan (10 micromol/l) reduced phenylephrine response only in vessels from mercury-treated rats. TXA(2) and PGE(2) levels were greater in the incubation medium of vessels from treated than untreated rats; NS 398 decreased these levels only in the mercury group. COX-2 protein was localized in adventitial and endothelial cells. Aortic COX-2 mRNA expression and plasma angiotensin converting enzyme activity were greater in mercury-treated rats. These results suggest that treatment with low doses of mercury increases the release of COX-2-derived vasoconstrictor prostanoids and its participation in phenylephrine responses. The increased activation of the renin-angiotensin system after mercury treatment might be associated to this increased COX-2 activity.


Subject(s)
Cyclooxygenase 2/physiology , Mercury/administration & dosage , Phenylephrine/pharmacology , Prostaglandins/physiology , Vasoconstrictor Agents/pharmacology , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/enzymology , Cyclooxygenase 2/chemistry , Drug Synergism , Male , Rats , Rats, Wistar , Up-Regulation/drug effects , Up-Regulation/physiology
4.
Braz J Med Biol Res ; 41(9): 789-95, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18820769

ABSTRACT

Lead (Pb2+) poisoning causes hypertension, but little is known regarding its acute effects on cardiac contractility. To evaluate these effects, force was measured in right ventricular strips that were contracting isometrically in 45 male Wistar rats (250-300 g) before and after the addition of increasing concentrations of lead acetate (3, 7, 10, 30, 70, 100, and 300 microM) to the bath. Changes in rate of stimulation (0.1-1.5 Hz), relative potentiation after pauses of 15, 30, and 60 s, effect of Ca2+ concentration (0.62, 1.25, and 2.5 mM), and the effect of isoproterenol (20 ng/mL) were determined before and after the addition of 100 microM Pb2+. Effects on contractile proteins were evaluated after caffeine treatment using tetanic stimulation (10 Hz) and measuring the activity of the myosin ATPase. Pb2+ produced concentration-dependent force reduction, significant at concentrations greater than 30 microM. The force developed in response to increasing rates of stimulation became smaller at 0.5 and 0.8 Hz. Relative potentiation increased after 100 microM Pb2+ treatment. Extracellular Ca2+ increment and isoproterenol administration increased force development but after 100 microM Pb2+ treatment the force was significantly reduced suggesting an effect of the metal on the sarcolemmal Ca2+ influx. Concentration of 100 microM Pb2+ also reduced the peak and plateau force of tetanic contractions and reduced the activity of the myosin ATPase. Results showed that acute Pb2+ administration, although not affecting the sarcoplasmic reticulum activity, produces a concentration-dependent negative inotropic effect and reduces myosin ATPase activity. Results suggest that acute lead administration reduced myocardial contractility by reducing sarcolemmal calcium influx and the myosin ATPase activity. These results also suggest that lead exposure is hazardous and has toxicological consequences affecting cardiac muscle.


Subject(s)
Heart/drug effects , Myocardial Contraction/drug effects , Myosins/drug effects , Organometallic Compounds/pharmacology , Animals , Heart Ventricles/drug effects , Isometric Contraction/drug effects , Male , Rats , Rats, Wistar
5.
Braz. j. med. biol. res ; 41(9): 789-795, Sept. 2008. ilus
Article in English | LILACS | ID: lil-492881

ABSTRACT

Lead (Pb2+) poisoning causes hypertension, but little is known regarding its acute effects on cardiac contractility. To evaluate these effects, force was measured in right ventricular strips that were contracting isometrically in 45 male Wistar rats (250-300 g) before and after the addition of increasing concentrations of lead acetate (3, 7, 10, 30, 70, 100, and 300 µM) to the bath. Changes in rate of stimulation (0.1-1.5 Hz), relative potentiation after pauses of 15, 30, and 60 s, effect of Ca2+ concentration (0.62, 1.25, and 2.5 mM), and the effect of isoproterenol (20 ng/mL) were determined before and after the addition of 100 µM Pb2+. Effects on contractile proteins were evaluated after caffeine treatment using tetanic stimulation (10 Hz) and measuring the activity of the myosin ATPase. Pb2+ produced concentration-dependent force reduction, significant at concentrations greater than 30 µM. The force developed in response to increasing rates of stimulation became smaller at 0.5 and 0.8 Hz. Relative potentiation increased after 100 µM Pb2+ treatment. Extracellular Ca2+ increment and isoproterenol administration increased force development but after 100 µM Pb2+ treatment the force was significantly reduced suggesting an effect of the metal on the sarcolemmal Ca2+ influx. Concentration of 100 µM Pb2+ also reduced the peak and plateau force of tetanic contractions and reduced the activity of the myosin ATPase. Results showed that acute Pb2+ administration, although not affecting the sarcoplasmic reticulum activity, produces a concentration-dependent negative inotropic effect and reduces myosin ATPase activity. Results suggest that acute lead administration reduced myocardial contractility by reducing sarcolemmal calcium influx and the myosin ATPase activity. These results also suggest that lead exposure is hazardous and has toxicological consequences affecting cardiac muscle.


Subject(s)
Animals , Male , Rats , Heart/drug effects , Myocardial Contraction/drug effects , Myosins/drug effects , Organometallic Compounds/pharmacology , Heart Ventricles/drug effects , Isometric Contraction/drug effects , Rats, Wistar
6.
Am J Physiol Heart Circ Physiol ; 295(3): H1033-H1043, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18599595

ABSTRACT

Increased cardiovascular risk after mercury exposure has been described, but the underlying mechanisms are not well explored. We analyzed the effects of chronic exposure to low mercury concentrations on endothelium-dependent responses in aorta and mesenteric resistance arteries (MRA). Wistar rats were treated with mercury chloride (1st dose 4.6 microg/kg, subsequent dose 0.07 microg.kg(-1).day(-1) im, 30 days) or vehicle. Blood levels at the end of treatment were 7.97 +/- 0.59 ng/ml. Mercury treatment: 1) did not affect systolic blood pressure; 2) increased phenylephrine-induced vasoconstriction; 3) reduced acetylcholine-induced vasodilatation; and 4) reduced in aorta and abolished in MRA the increased phenylephrine responses induced by either endothelium removal or the nitric oxide synthase (NOS) inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME, 100 microM). Superoxide dismutase (SOD, 150 U/ml) and the NADPH oxidase inhibitor apocynin (0.3 mM) decreased the phenylephrine-induced contraction in aorta more in mercury-treated rats than controls. In MRA, SOD did not affect phenylephrine responses; however, when coincubated with l-NAME, the l-NAME effect on phenylephrine response was restored in mercury-treated rats. Both apocynin and SOD restored the impaired acetylcholine-induced vasodilatation in vessels from treated rats. Endothelial NOS expression did not change in aorta but was increased in MRA from mercury-treated rats. Vascular O2(-) production, plasmatic malondialdehyde levels, and total antioxidant status increased with the mercury treatment. In conclusion, chronic exposure to low concentrations of mercury promotes endothelial dysfunction as a result of the decreased NO bioavailability induced by increases in oxidative stress. These findings offer further evidence that mercury, even at low concentrations, is an environmental risk factor for cardiovascular disease.


Subject(s)
Endothelium, Vascular/drug effects , Mercuric Chloride/toxicity , Oxidative Stress/drug effects , Vascular Resistance/drug effects , Acetylcholine/metabolism , Animals , Arteries/drug effects , Blood Pressure/drug effects , Blotting, Western , Enzyme Inhibitors/pharmacology , Male , Malondialdehyde/metabolism , Mercuric Chloride/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Splanchnic Circulation/drug effects , Superoxides/metabolism , Vasoconstriction/drug effects , Vasodilation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...