Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 38(22): 6109-17, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-15573614

ABSTRACT

Microbial source tracking (MST) uses various approaches to classify fecal-indicator microorganisms to source hosts. Reproducibility, accuracy, and robustness of seven phenotypic and genotypic MST protocols were evaluated by use of Escherichia coli from an eight-host library of known-source isolates and a separate, blinded challenge library. In reproducibility tests, measuring each protocol's ability to reclassify blinded replicates, only one (pulsed-field gel electrophoresis; PFGE) correctly classified all test replicates to host species; three protocols classified 48-62% correctly, and the remaining three classified fewer than 25% correctly. In accuracy tests, measuring each protocol's ability to correctly classify new isolates, ribotyping with EcoRI and PvuII approached 100% correctclassification but only 6% of isolates were classified; four of the other six protocols (antibiotic resistance analysis, PFGE, and two repetitive-element PCR protocols) achieved better than random accuracy rates when 30-100% of challenge isolates were classified. In robustness tests, measuring each protocol's ability to recognize isolates from nonlibrary


Subject(s)
Escherichia coli/classification , Feces/microbiology , Water Microbiology , Animals , Escherichia coli/isolation & purification , False Positive Reactions , Gene Library , Genotype , Humans , Phenotype , Reproducibility of Results , Ribotyping , Sensitivity and Specificity
2.
Appl Environ Microbiol ; 69(6): 3399-405, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12788742

ABSTRACT

The use of antibiotic resistance analysis (ARA) for microbial source tracking requires the generation of a library of isolates collected from known sources in the watershed. The size and composition of the library are critical in determining if it represents the diversity of patterns found in the watershed. This study was performed to determine the size that an ARA library needs to be to be representative of the watersheds for which it will be used and to determine if libraries from different watersheds can be merged to create multiwatershed libraries. Fecal samples from known human, domesticated, and wild animal sources were collected from six Virginia watersheds. From these samples, enterococci were isolated and tested by ARA. Based on cross-validation discriminant analysis, only the largest of the libraries (2,931 isolates) were found to be able to classify nonlibrary isolates as well as library isolates (i.e., were representative). Small libraries tended to have higher average rates of correct classification, but were much less able to correctly classify nonlibrary isolates. A merged multiwatershed library (6,587 isolates) was created and was found to be large enough to be representative of the isolates from the contributing watersheds. When isolates that were collected from the contributing watersheds approximately 1 year later were analyzed with the multiwatershed library, they were classified as well as the isolates in the library, suggesting that the resistance patterns are temporally stable for at least 1 year. The ability to obtain a representative, temporally stable library demonstrates that ARA can be used to identify sources of fecal pollution in natural waters.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Enterococcus/drug effects , Fresh Water/microbiology , Gene Library , Animals , Animals, Domestic , Animals, Wild , Enterococcus/classification , Enterococcus/genetics , Enterococcus/isolation & purification , Feces/microbiology , Humans , Rural Health , Urban Health , Water Pollutants
3.
J Water Health ; 1(4): 153-66, 2003 Dec.
Article in English | MEDLINE | ID: mdl-15382721

ABSTRACT

As part of a larger microbial source tracking (MST) study, several laboratories used library-based, phenotypic subtyping techniques to analyse fecal samples from known sources (human, sewage, cattle, dogs and gulls) and blinded water samples that were contaminated with the fecal sources. The methods used included antibiotic resistance analysis (ARA) of fecal streptococci, enterococci, fecal coliforms and E. coli; multiple antibiotic resistance (MAR) and Kirby-Bauer antibiotic susceptibility testing of E. coli; and carbon source utilization for fecal streptococci and E. coli. Libraries comprising phenotypic patterns of indicator bacteria isolated from known fecal sources were used to predict the sources of isolates from water samples that had been seeded with fecal material from the same sources as those used to create the libraries. The accuracy of fecal source identification in the water samples was assessed both with and without a cut-off termed the minimum detectable percentage (MDP). The libraries (approximately 300 isolates) were not large enough to avoid the artefact of source-independent grouping, but some important conclusions could still be drawn. Use of a MDP decreased the percentage of false-positive source identifications, and had little effect on the high percentage of true-positives in the most accurate libraries. In general, the methods were more prone to false-positive than to false-negative errors. The most accurate method, with a true-positive rate of 100% and a false-positive rate of 39% when analysed with a MDP, was ARA of fecal streptococci. The internal accuracy of the libraries did not correlate with the accuracy of source prediction in water samples, showing that one should not rely solely on parameters such as the average rate of correct classification of a library to indicate its predictive capabilities.


Subject(s)
Feces/microbiology , Sewage/microbiology , Water Microbiology , Animals , Birds , California , Cattle , Dogs , Drug Resistance, Microbial , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterococcus/drug effects , Enterococcus/isolation & purification , False Positive Reactions , Feces/virology , Humans , Microbial Sensitivity Tests , Phenotype , Sewage/virology , Species Specificity , Streptococcus/drug effects , Streptococcus/isolation & purification
4.
J Water Health ; 1(4): 209-23, 2003 Dec.
Article in English | MEDLINE | ID: mdl-15382725

ABSTRACT

Several commonly used statistical methods for fingerprint identification in microbial source tracking (MST) were examined to assess the effectiveness of pattern-matching algorithms to correctly identify sources. Although numerous statistical methods have been employed for source identification, no widespread consensus exists as to which is most appropriate. A large-scale comparison of several MST methods, using identical fecal sources, presented a unique opportunity to assess the utility of several popular statistical methods. These included discriminant analysis, nearest neighbour analysis, maximum similarity and average similarity, along with several measures of distance or similarity. Threshold criteria for excluding uncertain or poorly matched isolates from final analysis were also examined for their ability to reduce false positives and increase prediction success. Six independent libraries used in the study were constructed from indicator bacteria isolated from fecal materials of humans, seagulls, cows and dogs. Three of these libraries were constructed using the rep-PCR technique and three relied on antibiotic resistance analysis (ARA). Five of the libraries were constructed using Escherichia coli and one using Enterococcus spp. (ARA). Overall, the outcome of this study suggests a high degree of variability across statistical methods. Despite large differences in correct classification rates among the statistical methods, no single statistical approach emerged as superior. Thresholds failed to consistently increase rates of correct classification and improvement was often associated with substantial effective sample size reduction. Recommendations are provided to aid in selecting appropriate analyses for these types of data.


Subject(s)
Data Interpretation, Statistical , Feces/microbiology , Statistics as Topic/methods , Animals , Birds , Cattle , Discriminant Analysis , Dogs , Enterobacteriaceae/isolation & purification , Humans , Microbial Sensitivity Tests , Polymerase Chain Reaction , Water Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...