Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Cancer ; 129(17): 2655-2670, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37309215

ABSTRACT

BACKGROUND: The World Cancer Research Fund/American Institute for Cancer Research Cancer Prevention Recommendations are lifestyle-based guidelines that aim to reduce cancer risk. A systematic review and meta-analysis of studies investigating associations between a score for adherence to the 2018 Cancer Prevention Recommendations and cancer risk was conducted. METHODS: MEDLINE, Embase, Web of Science, and Scopus were searched for studies published to November 28, 2022. In meta-analysis, the estimated risk ratios and 95% CIs for adherence score as a continuous (per 1-point increment) and categorical (highest vs. lowest score category) variable using random-effects models were estimated. RESULTS: Eighteen studies (11 cohort; seven case-control) were included investigating incidence of breast (n = 7), colorectal (n = 5), prostate (n = 2), lung (n = 2), pancreatic (n = 1), endometrial (n = 1), unknown primary cancer (n = 1), chronic lymphocytic leukemia (n = 1), and overall (any) cancer (n = 1). The summary risk ratio per 1-point increment in adherence score was 0.89 (95% CI, 0.85-0.93; I2  = 76.5%; n = 7) for breast cancer, 0.88 (95% CI, 0.84-0.91; I2  = 26.2%; n = 4) for colorectal cancer, and 0.92 (95% CI, 0.86-0.98, I2  = 66.0%; n = 2) for lung cancer. There were no significant associations with prostate or other cancers. Meta-analysis results using categorical adherence score variables were consistent with these findings. CONCLUSIONS: Greater adherence to the 2018 World Cancer Research Fund/American Institute for Cancer Research Cancer Prevention Recommendations was associated with lower risk of breast, colorectal, and lung cancers. Future studies investigating associations with risk of other forms of cancer are warranted. PROSPERO REGISTRATION NUMBER: CRD42022313327.


Subject(s)
Breast Neoplasms , Colorectal Neoplasms , Male , Humans , United States/epidemiology , Risk , Life Style , Breast Neoplasms/epidemiology , Incidence , Colorectal Neoplasms/epidemiology , Risk Factors , Diet
3.
MAGMA ; 36(2): 159-173, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37081247

ABSTRACT

The 9.4 T scanner in Maastricht is a whole-body magnet with head gradients and parallel RF transmit capability. At the time of the design, it was conceptualized to be one of the best fMRI scanners in the world, but it has also been used for anatomical and diffusion imaging. 9.4 T offers increases in sensitivity and contrast, but the technical ultra-high field (UHF) challenges, such as field inhomogeneities and constraints set by RF power deposition, are exacerbated compared to 7 T. This article reviews some of the 9.4 T work done in Maastricht. Functional imaging experiments included blood oxygenation level-dependent (BOLD) and blood-volume weighted (VASO) fMRI using different readouts. BOLD benefits from shorter T2* at 9.4 T while VASO from longer T1. We show examples of both ex vivo and in vivo anatomical imaging. For many applications, pTx and optimized coils are essential to harness the full potential of 9.4 T. Our experience shows that, while considerable effort was required compared to our 7 T scanner, we could obtain high-quality anatomical and functional data, which illustrates the potential of MR acquisitions at even higher field strengths. The practical challenges of working with a relatively unique system are also discussed.


Subject(s)
Magnetic Resonance Imaging , Magnetic Resonance Imaging/methods
5.
Mult Scler Relat Disord ; 57: 103436, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34871855

ABSTRACT

Magnetic resonance imaging (MRI) is a cornerstone in multiple sclerosis (MS) diagnostics and monitoring. Ultra-high field (UHF) MRI is being increasingly used and becoming more accessible. Due to the small diameter and mobility of the spinal cord, imaging this structure at ultra-high fields poses additional challenges compared to brain imaging. Here we review the potential benefits for the MS field by providing a literature overview of the use UHF spinal cord MRI in MS research and we elaborate on the challenges that are faced. Benefits include increased signal- and contrast-to-noise, enabling for higher spatial resolutions, which can improve MS lesion sensitivity in both the spinal white matter as well as grey matter. Additionally, these benefits can aid imaging of microstructural abnormalities in the spinal cord in MS using advanced MRI techniques like functional imaging, MR spectroscopy and diffusion-based techniques. Technical challenges include increased magnetic field inhomogeneities, distortions from physiological motion and optimalisation of sequences. Approaches including parallel imaging techniques, real time shimming and retrospective compensation of physiological motion are making it increasingly possible to unravel the potential of spinal cord UHF MRI in the context of MS research.


Subject(s)
Multiple Sclerosis , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging , Multiple Sclerosis/diagnostic imaging , Retrospective Studies , Spinal Cord/diagnostic imaging
6.
J Neuroimaging ; 31(5): 902-911, 2021 09.
Article in English | MEDLINE | ID: mdl-34161640

ABSTRACT

BACKGROUND AND PURPOSE: Dynamic contrast-enhanced MRI (DCE-MRI) can be employed to assess the blood-brain barrier (BBB) integrity. Detection of BBB leakage at lower field strengths (≤3T) is cumbersome as the signal is noisy, while leakage can be subtle. Utilizing the increased signal-to-noise ratio at higher field strengths, we explored the application of 7T DCE-MRI for assessing BBB leakage. METHODS: A dual-time resolution DCE-MRI method was implemented at 7T and a slow injection rate (0.3 ml/s) and low dose (3 mmol) served to obtain signal changes linearly related to the gadolinium concentration, that is, minimized for T2* degradation effects. With the Patlak graphical approach, the leakage rate (Ki ) and blood plasma volume fraction (vp ) were calculated. The method was evaluated in 10 controls, an ischemic stroke patient, and a patient with a transient ischemic attack. RESULTS: Ki and vp were significantly higher in gray matter compared to white matter of all participants. These Ki values were higher in both patients compared to the control subjects. Finally, for the lesion identified in the ischemic stroke patient, higher leakage values were observed compared to normal-appearing tissue. CONCLUSION: We demonstrate how a dual-time resolution DCE-MRI protocol at 7T, with administration of half the clinically used contrast agent dose, can be used for assessing subtle BBB leakage. Although the feasibility of DCE-MRI for assessing the BBB integrity at 3T is well known, we showed that a continuous sampling DCE-MRI method tailored for 7T is also capable of assessing leakage with a high sensitivity over a range of Ki values.


Subject(s)
Blood-Brain Barrier , White Matter , Blood-Brain Barrier/diagnostic imaging , Contrast Media , Gray Matter , Humans , Magnetic Resonance Imaging
8.
Neurology ; 96(7): 327-341, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33361257

ABSTRACT

Identifying a structural brain lesion on MRI has important implications in epilepsy and is the most important factor that correlates with seizure freedom after surgery in patients with drug-resistant focal onset epilepsy. However, at conventional magnetic field strengths (1.5 and 3T), only approximately 60%-85% of MRI examinations reveal such lesions. Over the last decade, studies have demonstrated the added value of 7T MRI in patients with and without known epileptogenic lesions from 1.5 and/or 3T. However, translation of 7T MRI to clinical practice is still challenging, particularly in centers new to 7T, and there is a need for practical recommendations on targeted use of 7T MRI in the clinical management of patients with epilepsy. The 7T Epilepsy Task Force-an international group representing 21 7T MRI centers with experience from scanning over 2,000 patients with epilepsy-would hereby like to share its experience with the neurology community regarding the appropriate clinical indications, patient selection and preparation, acquisition protocols and setup, technical challenges, and radiologic guidelines for 7T MRI in patients with epilepsy. This article mainly addresses structural imaging; in addition, it presents multiple nonstructural MRI techniques that benefit from 7T and hold promise as future directions in epilepsy. Answering to the increased availability of 7T MRI as an approved tool for diagnostic purposes, this article aims to provide guidance on clinical 7T MRI epilepsy management by giving recommendations on referral, suitable 7T MRI protocols, and image interpretation.


Subject(s)
Brain/diagnostic imaging , Epilepsy/diagnostic imaging , Magnetic Resonance Imaging , Consensus , Humans
9.
Phys Imaging Radiat Oncol ; 9: 35-42, 2019 Jan.
Article in English | MEDLINE | ID: mdl-33458423

ABSTRACT

BACKGROUND AND PURPOSE: In neuro-oncology, high spatial accuracy is needed for clinically acceptable high-precision radiation treatment planning (RTP). In this study, the clinical applicability of anatomically optimised 7-Tesla (7T) MR images for reliable RTP is assessed with respect to standard clinical imaging modalities. MATERIALS AND METHODS: System- and phantom-related geometrical distortion (GD) were quantified on clinically-relevant MR sequences at 7T and 3T, and on CT images using a dedicated anthropomorphic head phantom incorporating a 3D grid-structure, creating 436 points-of-interest. Global GD was assessed by mean absolute deviation (MADGlobal). Local GD relative to the magnetic isocentre was assessed by MADLocal. Using 3D displacement vectors of individual points-of-interest, GD maps were created. For clinically acceptable radiotherapy, 7T images need to meet the criteria for accurate dose delivery (GD < 1 mm) and present comparable GD as tolerated in clinically standard 3T MR/CT-based RTP. RESULTS: MADGlobal in 7T and 3T images ranged from 0.3 to 2.2 mm and 0.2-0.8 mm, respectively. MADLocal increased with increasing distance from the isocentre, showed an anisotropic distribution, and was significantly larger in 7T MR sequences (MADLocal = 0.2-1.2 mm) than in 3T (MADLocal = 0.1-0.7 mm) (p < 0.05). Significant differences in GD were detected between 7T images (p < 0.001). However, maximum MADLocal remained ≤1 mm within 68.7 mm diameter spherical volume. No significant differences in GD were found between 7T and 3T protocols near the isocentre. CONCLUSIONS: System- and phantom-related GD remained ≤1 mm in central brain regions, suggesting that 7T MR images could be implemented in radiotherapy with clinically acceptable spatial accuracy and equally tolerated GD as in 3T MR/CT-based RTP. For peripheral regions, GD should be incorporated in safety margins for treatment uncertainties. Moreover, the effects of sequence-related factors on GD needs further investigation to obtain RTP-specific MR protocols.

10.
Neuroimage ; 178: 769-779, 2018 09.
Article in English | MEDLINE | ID: mdl-29890330

ABSTRACT

Functional mapping of cerebral blood volume (CBV) changes has the potential to reveal brain activity with high localization specificity at the level of cortical layers and columns. Non-invasive CBV imaging using Vascular Space Occupancy (VASO) at ultra-high magnetic field strengths promises high spatial specificity but poses unique challenges in human applications. As such, 9.4 T B1+ and B0 inhomogeneities limit efficient blood tagging, while the specific absorption rate (SAR) constraints limit the application of VASO-specific RF pulses. Moreover, short T2* values at 9.4 T require short readout duration, and long T1 values at 9.4 T can cause blood-inflow contaminations. In this study, we investigated the applicability of layer-dependent CBV-fMRI at 9.4 T in humans. We addressed the aforementioned challenges by combining multiple technical advancements: temporally alternating pTx B1+ shimming parameters, advanced adiabatic RF-pulses, 3D-EPI signal readout, optimized GRAPPA acquisition and reconstruction, and stability-optimized RF channel combination. We found that a combination of suitable advanced methodology alleviates the challenges and potential artifacts, and that VASO fMRI provides reliable measures of CBV change across cortical layers in humans at 9.4 T. The localization specificity of CBV-fMRI, combined with the high sensitivity of 9.4 T, makes this method an important tool for future studies investigating cortical micro-circuitry in humans.


Subject(s)
Brain Mapping/methods , Brain/blood supply , Cerebral Blood Volume/physiology , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Humans
11.
Br J Radiol ; 90(1073): 20160906, 2017 May.
Article in English | MEDLINE | ID: mdl-28368659

ABSTRACT

OBJECTIVE: A fine structure of the corpus callosum (CC), consisting of radial lines, is seen in historical anatomical atlases as far back as that of Vicq d'Azyr (1786). This study examines a similar pattern observed in vivo using high-resolution MR images at 7 T. METHODS: 8 healthy subjects were examined with 7.0-T MRI. Anatomical images were collected with a gradient echo scan with 0.5-mm isotropic resolution, which were rated for visibility of the radial pattern. In addition, the second eigenvector of the diffusion tensor images was examined. RESULTS: The fine radial lines are detected not only in the sagittal view but also in the axial view of the in vivo MR images. From this, it is likely that these structures are two-dimensional ribbons. Interestingly, and confirming the structural nature of these stripes, the second eigenvector of the diffusion tensor imaging data shows an extremely similar pattern of oriented foliate structure. A similar modular structure involving transient septa has been observed previously in histological sections of human fetal CC. CONCLUSION: The separate sets of data-the atlas of Klingler, anatomical images and second eigenvector images-all indicate a ribbon-like arrangement of the fibres in the CC. As such, they closely match the structures shown in the drawn atlases of as old as 1786. Advances in knowledge: This ribbon arrangement of fibres in the CC, previously unseen in CT or lower field MRI, can now be observed in vivo. This appears to match over two centuries of ex vivo observations.


Subject(s)
Corpus Callosum/anatomy & histology , Corpus Callosum/diagnostic imaging , Magnetic Resonance Imaging , Adult , Anatomy/history , Female , History, 18th Century , History, 19th Century , History, 20th Century , Humans , Male , Time Factors , Young Adult
12.
Magn Reson Med ; 78(5): 1883-1890, 2017 11.
Article in English | MEDLINE | ID: mdl-28019035

ABSTRACT

PURPOSE: To eliminate a slice-position-dependent excitation error commonly observed in bipolar-gradient composite excitations such as spokes pulses in parallel transmission. THEORY AND METHODS: An undesired timing delay between subpulses in the composite pulse and their bipolar slice-selective gradient is hypothesized to cause the error. A mathematical model is presented here to relate this mismatch to an induced slice-position-dependent phase difference between the subpulses. A new navigator method is proposed to measure the timing mismatch and eliminate the error. This is demonstrated at 7 Tesla with flip-angle maps measured by a presaturation turbo-flash sequence and in vivo images acquired by a simultaneous multislice/echo-planar imaging (SMS-EPI) sequence. RESULTS: Error-free flip-angle maps were obtained in two ways: 1) by correcting the time delay directly and 2) by applying the corresponding slice-position-dependent phase differences to the subpulses. This confirms the validity of the mathematical description. The radiofrequency (RF)-gradient delay measured by the navigator method was of 6.3 µs, which agreed well with the estimate from flip-angle maps at different delay times. By applying the timing correction, accurately excited EPI images were acquired with bipolar dual-spokes SMS-2 excitations. CONCLUSION: An effective correction is proposed to mitigate slice-position-dependent errors in bipolar composite excitations caused by undesired RF-gradient timing delays. Magn Reson Med 78:1883-1890, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Echo-Planar Imaging , Humans , Phantoms, Imaging
13.
Magn Reson Med ; 78(3): 1050-1058, 2017 09.
Article in English | MEDLINE | ID: mdl-27774641

ABSTRACT

PURPOSE: In order to fully benefit from the improved signal-to-noise and contrast-to-noise ratios at 9.4T, the challenges of B1+ inhomogeneity and the long acquisition time of high-resolution 2D gradient-recalled echo (GRE) imaging were addressed. THEORY AND METHODS: Flip angle homogenized excitations were achieved by parallel transmission (pTx) of 3-spoke pulses, designed by magnitude least-squares optimization in a slice-by-slice fashion; the acquisition time reduction was achieved by simultaneous multislice (SMS) pulses. The slice-specific spokes complex radiofrequency scaling factors were applied to sinc waveforms on a per-channel basis and combined with the other pulses in an SMS slice group to form the final SMS-pTX pulse. Optimal spokes locations were derived from simulations. RESULTS: Flip angle maps from presaturation TurboFLASH showed improvement of flip angle homogenization with 3-spoke pulses over CP-mode excitation (normalized root-mean-square error [NRMSE] 0.357) as well as comparable excitation homogeneity across the single-band (NRMSE 0.119), SMS-2 (NRMSE 0.137), and SMS-3 (NRMSE 0.132) 3-spoke pulses. The application of the 3-spoke SMS-3 pulses in a 48-slice GRE protocol, which has an in-plane resolution of 0.28 × 0.28 mm, resulted in a 50% reduction of scan duration (total acquisition time 6:52 min including reference scans). CONCLUSION: Time-efficient flip angle homogenized high-resolution GRE imaging at 9.4T was accomplished by using slice-specific SMS-pTx spokes excitations. Magn Reson Med 78:1050-1058, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Adult , Algorithms , Brain/diagnostic imaging , Humans , Least-Squares Analysis , Male
14.
MAGMA ; 29(3): 399-415, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27097904

ABSTRACT

OBJECTIVE: This study evaluates the inter-site and intra-site reproducibility of 7 Tesla brain imaging and compares it to literature values for other field strengths. MATERIALS AND METHODS: The same two subjects were imaged at eight different 7 T sites. MP2RAGE, TSE, TOF, SWI, EPI as well as B1 and B0 field maps were analyzed quantitatively to assess inter-site reproducibility. Intra-site reproducibility was measured with rescans at three sites. RESULTS: Quantitative measures of MP2RAGE scans showed high agreement. Inter-site and intra-site reproducibility errors were comparable to 1.5 and 3 T. Other sequences also showed high reproducibility between the sites, but differences were also revealed. The different RF coils used were the main source for systematic differences between the sites. CONCLUSION: Our results show for the first time that multi-center brain imaging studies of the supratentorial brain can be performed at 7 T with high reproducibility and similar reliability as at 3T. This study develops the basis for future large-scale 7 T multi-site studies.


Subject(s)
Brain Mapping/methods , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Adult , Algorithms , Humans , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/instrumentation , Male , Reproducibility of Results , Signal-To-Noise Ratio
15.
MAGMA ; 29(3): 333-45, 2016 Jun.
Article in English | MEDLINE | ID: mdl-26995492

ABSTRACT

OBJECTIVES: To overcome the challenges of B0 and RF excitation inhomogeneity at ultra-high field MRI, a workflow for volumetric B0 and flip-angle homogenisation was implemented on a human 9.4 T scanner. MATERIALS AND METHODS: Imaging was performed with a 9.4 T human MR scanner (Siemens Medical Solutions, Erlangen, Germany) using a 16-channel parallel transmission system. B0- and B1-mapping were done using a dual-echo GRE and transmit phase-encoded DREAM, respectively. B0 shims and a small-tip-angle-approximation kT-points pulse were calculated with an off-line routine and applied to acquire T1- and T 2 (*) -weighted images with MPRAGE and 3D EPI, respectively. RESULTS: Over six in vivo acquisitions, the B0-distribution in a region-of-interest defined by a brain mask was reduced down to a full-width-half-maximum of 0.10 ± 0.01 ppm (39 ± 2 Hz). Utilising the kT-points pulses, the normalised RMSE of the excitation was decreased from CP-mode's 30.5 ± 0.9 to 9.2 ± 0.7 % with all B 1 (+)  voids eliminated. The SNR inhomogeneities and contrast variations in the T1- and T 2 (*) -weighted volumetric images were greatly reduced which led to successful tissue segmentation of the T1-weighted image. CONCLUSION: A 15-minute B0- and flip-angle homogenisation workflow, including the B0- and B1-map acquisitions, was successfully implemented and enabled us to reduce intensity and contrast variations as well as echo-planar image distortions in 9.4 T images.


Subject(s)
Brain/diagnostic imaging , Echo-Planar Imaging , Image Enhancement/methods , Brain/pathology , Brain/physiopathology , Brain Mapping/methods , Calibration , Contrast Media/chemistry , Humans , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional , Radio Waves , Workflow
16.
MAGMA ; 29(3): 591-603, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27026245

ABSTRACT

OBJECTIVES: The use of 7 Tesla (T) magnetic resonance imaging (MRI) has recently shown great potential for high-resolution soft-tissue neuroimaging and visualization of microvascularization in glioblastoma (GBM). We have designed a clinical trial to explore the value of 7 T MRI in radiation treatment of GBM. For this aim we performed a preparatory study to investigate the technical feasibility of incorporating 7 T MR images into the neurosurgical navigation and radiotherapy treatment planning (RTP) systems via qualitative and quantitative assessment of the image quality. MATERIALS AND METHODS: The MR images were acquired with a Siemens Magnetom 7 T whole-body scanner and a Nova Medical 32-channel head coil. The 7 T MRI pulse sequences included magnetization-prepared two rapid acquisition gradient echoes (MP2RAGE), T2-SPACE, SPACE-FLAIR and gradient echo sequences (GRE). A pilot study with three healthy volunteers and an anthropomorphic 3D phantom was used to assess image quality and geometrical image accuracy. RESULTS: The MRI scans were well tolerated by the volunteers. Susceptibility artefacts were observed in both the cortex and subcortical white matter at close proximity to air-tissue interfaces. Regional loss of signal and contrast could be minimized by the use of dielectric pads. Image transfer and processing did not degrade image quality. The system-related spatial uncertainty of geometrical distortion-corrected MP2RAGE pulse sequences was ≤2 mm. CONCLUSION: Integration of high-quality and geometrically-reliable 7 T MR images into neurosurgical navigation and RTP software is technically feasible and safe.


Subject(s)
Brain Neoplasms/radiotherapy , Glioblastoma/radiotherapy , Magnetic Resonance Imaging/methods , Radiotherapy, Image-Guided/methods , Adult , Anthropometry , Artifacts , Female , Healthy Volunteers , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Magnetic Fields , Male , Models, Statistical , Phantoms, Imaging , Pilot Projects , Radiotherapy Planning, Computer-Assisted , Reproducibility of Results
17.
Neuroimage Clin ; 5: 341-8, 2014.
Article in English | MEDLINE | ID: mdl-25161900

ABSTRACT

In Alzheimer's disease (AD), the hippocampus is an early site of tau pathology and neurodegeneration. Histological studies have shown that lesions are not uniformly distributed within the hippocampus. Moreover, alterations of different hippocampal layers may reflect distinct pathological processes. 7 T MRI dramatically improves the visualization of hippocampal subregions and layers. In this study, we aimed to assess whether 7 T MRI can detect volumetric changes in hippocampal layers in vivo in patients with AD. We studied four AD patients and seven control subjects. MR images were acquired using a whole-body 7 T scanner with an eight channel transmit-receive coil. Hippocampal subregions were manually segmented from coronal T2*-weighted gradient echo images with 0.3 × 0.3 × 1.2 mm3 resolution using a protocol that distinguishes between layers richer or poorer in neuronal bodies. Five subregions were segmented in the region of the hippocampal body: alveus, strata radiatum, lacunosum and moleculare (SRLM) of the cornu Ammonis (CA), hilum, stratum pyramidale of CA and stratum pyramidale of the subiculum. We found strong bilateral reductions in the SRLM of the cornu Ammonis and in the stratum pyramidale of the subiculum (p < 0.05), with average cross-sectional area reductions ranging from -29% to -49%. These results show that it is possible to detect volume loss in distinct hippocampal layers using segmentation of 7 T MRI. 7 T MRI-based segmentation is a promising tool for AD research.


Subject(s)
Alzheimer Disease/pathology , Hippocampus/pathology , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging , Aged , Feasibility Studies , Female , Humans , Male , Middle Aged
18.
PLoS One ; 8(2): e56593, 2013.
Article in English | MEDLINE | ID: mdl-23460806

ABSTRACT

Mouse lemurs are non-human primate models of cerebral aging and neurodegeneration. Much smaller than other primates, they recapitulate numerous features of human brain aging, including progressive cerebral atrophy and correlation between regional atrophy and cognitive impairments. Characterization of brain atrophy in mouse lemurs has been done by MRI measures of regional CSF volume and by MRI measures of regional atrophy. Here, we further characterize mouse lemur brain aging using ex vivo MR microscopy (31 µm in-plane resolution). First, we performed a non-biased, direct volumetric quantification of dentate gyrus and extended Ammon's horn. We show that both dentate gyrus and Ammon's horn undergo an age-related reorganization leading to a growth of the dentate gyrus and an atrophy of the Ammon's horn, even in the absence of global hippocampal atrophy. Second, on these first MR microscopic images of the mouse lemur brain, we depicted cortical and hippocampal hypointense spots. We demonstrated that their incidence increases with aging and that they correspond either to amyloid deposits or to cerebral microhemorrhages.


Subject(s)
Aging/pathology , Cheirogaleidae/physiology , Hippocampus/pathology , Hippocampus/physiopathology , Intracranial Hemorrhages/physiopathology , Magnetic Resonance Imaging , Plaque, Amyloid/physiopathology , Animals , Cerebral Cortex/pathology , Cerebral Cortex/physiopathology , Humans , Intracranial Hemorrhages/complications , Intracranial Hemorrhages/pathology , Plaque, Amyloid/complications , Plaque, Amyloid/pathology
19.
J Magn Reson Imaging ; 35(6): 1312-21, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22241685

ABSTRACT

PURPOSE: To investigate, via numerical simulations, the compliance of the specific absorption rate (SAR) versus temperature guidelines for the human head in magnetic resonance imaging procedures utilizing parallel transmission at high field. MATERIALS AND METHODS: A combination of finite element and finite-difference time-domain methods was used to calculate the evolution of the temperature distribution in the human head for a large number of parallel transmission scenarios. The computations were performed on a new model containing 20 anatomical structures. RESULTS: Among all the radiofrequency field exposure schemes simulated, the recommended 39°C maximum local temperature was never exceeded when the local 10-g average SAR threshold was reached. On the other hand, the maximum temperature barely complied with its guideline when the global SAR reached 3.2 W/kg. The maximal temperature in the eye could very well rise by more than 1°C in both cases. CONCLUSION: Considering parallel transmission, the recommended values of local 10-g SAR may remain a relevant metric to ensure that the local temperature inside the human head never exceeds 39°C, although it can lead to rises larger than 1°C in the eye. Monitoring temperature instead of SAR can provide increased flexibility in pulse design for parallel transmission.


Subject(s)
Body Temperature/physiology , Body Temperature/radiation effects , Head/physiology , Head/radiation effects , Magnetic Resonance Imaging , Models, Biological , Computer Simulation , Dose-Response Relationship, Radiation , Humans , Magnetic Fields , Radiation Dosage
20.
Neurobiol Aging ; 33(8): 1533-44, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21531045

ABSTRACT

Detection of amyloid plaques in the brain by in vivo neuroimaging is a very promising biomarker approach for early diagnosis of Alzheimer's disease (AD) and evaluation of therapeutic efficacy. Here we describe a new method to detect amyloid plaques by in vivo magnetic resonance imaging (MRI) based on the intracerebroventricular injection of a nontargeted gadolinium (Gd)-based contrast agent, which rapidly diffuses throughout the brain and increases the signal and contrast of magnetic resonance (MR) images by shortening the T1 relaxation time. This gain in image sensitivity after in vitro and in vivo Gd staining significantly improves the detection and resolution of individual amyloid plaques in the cortex and hippocampus of AD transgenic mice. The improved image resolution is sensitive enough to demonstrate an age-dependent increase of amyloid plaque load and a good correlation between the amyloid load measured by µMRI and histology. These results provide the first demonstration that nontargeted Gd staining can enhance the detection of amyloid plaques to follow the progression of AD and to evaluate the activity of amyloid-lowering therapeutic strategies in longitudinal studies.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Brain/metabolism , Brain/pathology , Gadolinium , Magnetic Resonance Imaging/methods , Plaque, Amyloid/metabolism , Animals , Contrast Media , Female , Gadolinium/pharmacokinetics , Mice , Mice, Transgenic , Molecular Imaging/methods , Staining and Labeling/methods , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...