Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Autoimmun ; : 103239, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38821769

ABSTRACT

Sarcoidosis is a chronic inflammatory disease that can affect any organ in the body. Its exact cause remains unknown, but it is believed to result from a combination of genetic and environmental factors. Some potential causes of sarcoidosis include genetics, environmental triggers, immune system dysfunction, the gut microbiome, sex, and race/ethnicity. Genetic mutations are associated with protection against disease progression or an increased susceptibility to more severe disease, while exposure to certain chemicals, bacteria, viruses, or allergens can trigger the formation of immune cell congregations (granulomas) in different organs. Dysfunction of the immune system, including autoimmune reactions, may also contribute. The gut microbiome and factors such as being female or having African American, Scandinavian, Irish, or Puerto Rican heritage are additional contributors to disease outcome. Recent research has suggested that certain drugs, such as anti-Programmed Death-1 (PD-1) and antibiotics such as tuberculosis (TB) drugs, may raise the risk of developing sarcoidosis. Hormone levels, particularly higher levels of estrogen and progesterone in women, have also been linked to an increased likelihood of sarcoidosis. The diagnosis of sarcoidosis involves a comprehensive assessment that includes medical history, physical examination, laboratory tests, and imaging studies. While there is no cure for sarcoidosis, the symptoms can often be effectively managed through various treatment options. Treatment may involve the use of medications, surgical interventions, or lifestyle changes. These disparate factors suggests that sarcoidosis has multiple positive and negative exacerbants on disease severity, some of which can be ameliorated and others which cannot.

2.
Cells ; 12(5)2023 02 28.
Article in English | MEDLINE | ID: mdl-36899902

ABSTRACT

Although profibrotic cytokines, such as IL-17A and TGF-ß1, have been implicated in the pathogenesis of interstitial lung disease (ILD), the interactions between gut dysbiosis, gonadotrophic hormones and molecular mediators of profibrotic cytokine expression, such as the phosphorylation of STAT3, have not been defined. Here, through chromatin immunoprecipitation sequencing (ChIP-seq) analysis of primary human CD4+ T cells, we show that regions within the STAT3 locus are significantly enriched for binding by the transcription factor estrogen receptor alpha (ERa). Using the murine model of bleomycin-induced pulmonary fibrosis, we found significantly increased regulatory T cells compared to Th17 cells in the female lung. The genetic absence of ESR1 or ovariectomy in mice significantly increased pSTAT3 and IL-17A expression in pulmonary CD4+ T cells, which was reduced after the repletion of female hormones. Remarkably, there was no significant reduction in lung fibrosis under either condition, suggesting that factors outside of ovarian hormones also contribute. An assessment of lung fibrosis among menstruating females in different rearing environments revealed that environments favoring gut dysbiosis augment fibrosis. Furthermore, hormone repletion following ovariectomy further augmented lung fibrosis, suggesting pathologic interactions between gonadal hormones and gut microbiota in relation to lung fibrosis severity. An analysis of female sarcoidosis patients revealed a significant reduction in pSTAT3 and IL-17A levels and a concomitant increase in TGF-ß1 levels in CD4+ T cells compared to male sarcoidosis patients. These studies reveal that estrogen is profibrotic in females and that gut dysbiosis in menstruating females augments lung fibrosis severity, supporting a critical interaction between gonadal hormones and gut flora in lung fibrosis pathogenesis.


Subject(s)
Gastrointestinal Microbiome , Lung Diseases, Interstitial , Pulmonary Fibrosis , Sarcoidosis , Humans , Male , Female , Mice , Animals , Pulmonary Fibrosis/pathology , Interleukin-17/metabolism , Transforming Growth Factor beta1 , Dysbiosis , Cytokines , Estrogens/adverse effects
3.
bioRxiv ; 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36824732

ABSTRACT

Although profibrotic cytokines such as IL-17A and TGF-ß1 have been implicated in interstitial lung disease (ILD) pathogenesis, interactions between gut dysbiosis, gonadotrophic hormones and molecular mediators of profibrotic cytokine expression, such as phosphorylation of STAT3, have not been defined. Here we show by chromatin immunoprecipitation sequencing (ChIP-seq) analysis of primary human CD4+ T cells that regions within the STAT3 locus are significantly enriched for binding by the transcription factor estrogen receptor alpha (ERa). Using the murine model of bleomycin-induced pulmonary fibrosis, we found significantly increased regulatory T cells compared to Th17 cells in the female lung. Genetic absence of ESR1 or ovariectomy in mice significantly increased pSTAT3 and IL-17A expression in pulmonary CD4+ T cells, which was reduced after repletion of female hormones. Remarkably, there was no significant reduction in lung fibrosis under either condition, suggesting that factors outside of ovarian hormones also contribute. Assessment of lung fibrosis among menstruating females in different rearing environments revealed that environments favoring gut dysbiosis augment fibrosis. Furthermore, hormone repletion following ovariectomy further augmented lung fibrosis, suggesting pathologic interactions between gonadal hormones and gut microbiota on lung fibrosis severity. Analysis in female sarcoidosis patients revealed a significant reduction in pSTAT3 and IL-17A levels and a concomitant increase in TGF-ß1 levels in CD4+ T cells, compared to male sarcoidosis patients. These studies reveal that estrogen is profibrotic in females and that gut dysbiosis in menstruating females augments lung fibrosis severity, supporting a critical interaction between gonadal hormones and gut flora in lung fibrosis pathogenesis.

4.
Plant Direct ; 5(8): e337, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34430792

ABSTRACT

Plant chromatin dynamics are generally recognized as playing a role in the genomic response to environmental stress. Although stress-induced transcriptional activities of LTR-retrotransposons have been reported, whether the stress response can be detected at the level of chromatin structure for LTR-retrotransposons is largely unknown. Using differential nuclease sensitivity profiling, we identified that two out of 29 maize LTR-retrotransposon families change their chromatin structure in response to drought stress in leaf tissue. The two LTR-retrotransposon families, uloh and vegu, are classified as nonautonomous LTR-retrotransposons. Differently from other families, the chromatin structure of these two families shifted from more open in normal conditions to more closed following drought stress. Although uloh and vegu lack sequence similarity, most of them shared an intriguing feature of having a new and uncharacterized insertion of a DNA sequence near one side of an LTR. In the uloh family, nine members with a strong drought response also exhibited a drought-induced reduction of published H3K4me3 histone modification in the inserted DNA region, implicating this modification in the chromatin structural changes. Our results provide new insight into how LTR-retrotransposons can alter their chromatin structure following stress response in plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...