Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Lancet Microbe ; 5(2): e173-e180, 2024 02.
Article in English | MEDLINE | ID: mdl-38244555

ABSTRACT

BACKGROUND: Whole-genome sequencing (WGS) is the gold standard diagnostic tool to identify and genetically characterise emerging pathogen mutations (variants), but cost, capacity, and timeliness limit its use when large populations need rapidly assessing. We assessed the potential of genotyping assays to provide accurate and timely variant information at scale by retrospectively examining surveillance for SARS-CoV-2 variants in England between March and September, 2021, when genotyping assays were used widely for variant detection. METHODS: We chose a panel of four RT-PCR genotyping assays to detect circulating variants of SARS-COV-2 in England and developed a decision algorithm to assign a probable SARS-CoV-2 variant to samples using the assay results. We extracted surveillance data from the UK Health Security Agency databases for 115 934 SARS-CoV-2-positive samples (March 1-Sept 6, 2021) when variant information was available from both genotyping and WGS. By comparing the genotyping and WGS variant result, we calculated accuracy metrics (ie, sensitivity, specificity, and positive predictive value [PPV]) and the time difference between the sample collection date and the availability of variant information. We assessed the number of samples with a variant assigned from genotyping or WGS, or both, over time. FINDINGS: Genotyping and an initial decision algorithm (April 10-May 11, 2021 data) were accurate for key variant assignment: sensitivities and PPVs were 0·99 (95% CI 0·99-0·99) for the alpha, 1·00 (1·00-1·00) for the beta, and 0·91 (0·80-1·00) for the gamma variants; specificities were 0·97 (0·96-0·98), 1·00 (1·00-1·00), and 1·00 (1·00-1·00), respectively. A subsequent decision algorithm over a longer time period (May 27-Sept 6, 2021 data) remained accurate for key variant assignment: sensitivities were 0·91 (95% CI 0·74-1·00) for the beta, 0·98 (0·98-0·99) for the delta, and 0·93 (0·81-1·00) for the gamma variants; specificities were 1·00 (1·00-1·00), 0·96 (0·96-0·97), and 1·00 (1·00-1·00), respectively; and PPVs were 0·83 (0·62-1·00), 1·00 (1·00-1·00), and 0·78 (0·59-0·97), respectively. Genotyping produced variant information a median of 3 days (IQR 2-4) after the sample collection date, which was faster than with WGS (9 days [8-11]). The flexibility of genotyping enabled a nine-times increase in the quantity of samples tested for variants by this method (from 5000 to 45 000). INTERPRETATION: RT-PCR genotyping assays are suitable for high-throughput variant surveillance and could complement WGS, enabling larger scale testing for known variants and timelier results, with important implications for effective public health responses and disease control globally, especially in settings with low WGS capacity. However, the choice of panels of RT-PCR assays is highly dependent on database information on circulating variants generated by WGS, which could limit the use of genotyping assays when new variants are emerging and spreading rapidly. FUNDING: UK Health Security Agency and National Institute for Health Research Health Protection Research Unit in Emergency Preparedness and Response.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , COVID-19/epidemiology , Genotype , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , England/epidemiology , COVID-19 Testing
2.
ACS Synth Biol ; 11(10): 3182-3189, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36223492

ABSTRACT

The heterodimeric transcription factor, hypoxia inducible factor-1 (HIF-1), is an important anticancer target as it supports the adaptation and response of tumors to hypoxia. Here, we optimized the repressed transactivator yeast two-hybrid system to further develop it as part of a versatile yeast-based drug discovery platform and validated it using HIF-1. We demonstrate both fluorescence-based and auxotrophy-based selections that could detect HIF-1α/HIF-1ß dimerization inhibition. The engineered genetic selection is tunable and able to differentiate between strong and weak interactions, shows a large dynamic range, and is stable over different growth phases. Furthermore, we engineered mechanisms to control for cellular activity and off-target drug effects. We thoroughly characterized all parts of the biosensor system and argue this tool will be generally applicable to a wide array of protein-protein interaction targets. We anticipate this biosensor will be useful as part of a drug discovery platform, particularly when screening DNA-encoded new modality drugs.


Subject(s)
Biosensing Techniques , Hypoxia-Inducible Factor 1 , Humans , Hypoxia , Drug Discovery , Trans-Activators
3.
SLAS Discov ; 26(5): 581-603, 2021 06.
Article in English | MEDLINE | ID: mdl-33834873

ABSTRACT

The global impact of synthetic biology has been accelerating, because of the plummeting cost of DNA synthesis, advances in genetic engineering, growing understanding of genome organization, and explosion in data science. However, much of the discipline's application in the pharmaceutical industry remains enigmatic. In this review, we highlight recent examples of the impact of synthetic biology on target validation, assay development, hit finding, lead optimization, and chemical synthesis, through to the development of cellular therapeutics. We also highlight the availability of tools and technologies driving the discipline. Synthetic biology is certainly impacting all stages of drug discovery and development, and the recognition of the discipline's contribution can further enhance the opportunities for the drug discovery and development value chain.


Subject(s)
Drug Development/methods , Drug Discovery/methods , Synthetic Biology/methods , Drug Development/trends , Drug Discovery/trends , Humans , Synthetic Biology/trends
4.
Biochim Biophys Acta Biomembr ; 1862(3): 183174, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31887275

ABSTRACT

Receptor component protein (RCP) is a 148 amino acid intracellular peripheral membrane protein, previously identified as promoting the coupling of CGRP to cAMP production at the CGRP receptor, a heterodimer of calcitonin receptor like-receptor (CLR), a family B G protein-coupled receptor (GPCR) and receptor activity modifying protein 1 (RAMP1). We extend these observations to show that it selectively enhances CGRP receptor coupling to Gs but not Gq or pERK activation. At other family B GPCRs, it enhances cAMP production at the calcitonin, corticotrophin releasing factor type 1a and glucagon-like peptide type 2 receptors with their cognate ligands but not at the adrenomedullin type 1 (AM1), gastric inhibitory peptide and glucagon-like peptide type 1 receptors, all expressed in transfected HEK293S cells. However, there is also cell-line variability as RCP did not enhance cAMP production at the endogenous calcitonin receptor in HEK293T cells and it has previously been reported that it is active on the AM1 receptor expressed on NIH3T3 cells. RCP appears to behave as a positive allosteric modulator at coupling a number of family B GPCRs to Gs, albeit in a manner that is regulated by cell-specific factors. It may exert its effects at the interface between the 2nd intracellular loop of the GPCR and Gs, although there is likely to be some overlap between this location and that occupied by the C-terminus of RAMPs if they bind to the GPCRs.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Membrane Proteins/metabolism , Receptor Activity-Modifying Protein 1/metabolism , Adrenomedullin/metabolism , Animals , Calcitonin Gene-Related Peptide , Calcitonin Receptor-Like Protein/chemistry , Calcitonin Receptor-Like Protein/metabolism , Cyclic AMP/metabolism , HEK293 Cells , Humans , Ligands , Peptide Hormones , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
5.
Biochem Pharmacol ; 127: 71-81, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28012961

ABSTRACT

TIP39 ("tuberoinfundibular peptide of 39 residues") acts via the parathyroid hormone 2 receptor, PTH2, a Family B G protein-coupled receptor (GPCR). Despite the importance of GPCRs in human physiology and pharmacotherapy, little is known about the molecular details of the TIP39-PTH2 interaction. To address this, we utilised the different pharmacological profiles of TIP39 and PTH(1-34) at PTH2 and its related receptor PTH1: TIP39 being an agonist at the former but an antagonist at the latter, while PTH(1-34) activates both. A total of 23 site-directed mutations of PTH2, in which residues were substituted to the equivalent in PTH1, were made and pharmacologically screened for agonist activity. Follow-up mutations were analysed by radioligand binding and cAMP assays. A model of the TIP39-PTH2 complex was built and analysed using molecular dynamics. Only Tyr318-Ile displayed reduced TIP39 potency, despite having increased PTH(1-34) potency, and further mutagenesis and analysis at this site demonstrated that this was due to reduced TIP39 affinity at Tyr318-Ile (pIC50=6.01±0.03) compared with wild type (pIC50=7.81±0.03). The hydroxyl group of the Tyr-318's side chain was shown to be important for TIP39 binding, with the Tyr318-Phe mutant displaying 13-fold lower affinity and 35-fold lower potency compared with wild type. TIP39 truncated by up to 5 residues at the N-terminus was still sensitive to the mutations at Tyr-318, suggesting that it interacts with a region within TIP39(6-39). Molecular modelling and molecular dynamics simulations suggest that the selectivity is based on an interaction between the Tyr-318 hydroxyl group with the carboxylate side chain of Asp-7 of the peptide.


Subject(s)
Neuropeptides/pharmacology , Receptor, Parathyroid Hormone, Type 2/metabolism , HEK293 Cells , Humans , Models, Molecular , Mutation , Neuropeptides/chemistry , Neuropeptides/genetics , Protein Structure, Secondary , Radioligand Assay , Receptor, Parathyroid Hormone, Type 1/chemistry , Receptor, Parathyroid Hormone, Type 1/metabolism , Receptor, Parathyroid Hormone, Type 2/agonists , Receptor, Parathyroid Hormone, Type 2/chemistry , Tyrosine/chemistry , Tyrosine/genetics
6.
Curr Opin Chem Biol ; 26: 104-10, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25909818

ABSTRACT

The pharmaceutical industry has historically relied on high throughput screening as a cornerstone to identify chemical equity for drug discovery projects. However, with pharmaceutical companies moving through a phase of diminished returns and alternative hit identification strategies proving successful, it is more important than ever to understand how this approach can be used more effectively to increase the delivery of next generation therapeutics from high throughput screening libraries. There is a wide literature that describes HTS and fragment based screening approaches which offer clear direction on the process for these two distinct activities. However, few people have considered how best to identify medium to low molecular weight compounds from large diversity screening sets and increase downstream success.


Subject(s)
Gene Library , High-Throughput Screening Assays/economics , Peptidomimetics/chemical synthesis , Small Molecule Libraries/chemical synthesis , Drug Design , Drug Discovery/economics , Drug Discovery/methods , High-Throughput Screening Assays/methods , Humans , Peptidomimetics/pharmacology , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
7.
Peptides ; 61: 83-7, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25218037

ABSTRACT

Parathyroid hormone (PTH) acts via the receptor PTH1 and plays an important role in calcium homeostasis. PTH's interaction with the N-terminal domain of PTH1 is mediated in part by Arg-20 on the peptide which forms a number of interactions with the receptor: a charge-charge interaction with Asp-137; hydrogen bonds with the backbone of Asp-29 and Met-32; and hydrophobic interactions with Met-32 and Gln-37. The aim of this work was to establish the importance of the charge-charge interaction through the combined use of modified peptide ligands, site-directed mutations of the receptor, and pharmacological assays. The substitution of Arg-20 with norleucine resulted in a 50-fold reduction in potency at PTH1 and Asp-137-Glu while, in contrast, both Asp-137-Asn and Asp-137-Ala receptors were largely insensitive to this ligand modification. The effect of this removal of the positive charge as position 20 could be partially rescued at PTH1 and Asp-137-Glu, but not Asp-137-Asn and Asp-137-Ala, through a substitution of peptide position 20 with ornithine. The latter two receptors, which have no negative charge at position 137, displayed potency for PTH that was reduced by 40- and 117-fold, respectively. These data demonstrate that a negative charge at residue-137 is important for interacting with ligands containing a positive charge at residue-20, and that the Arg-20 interaction with Asp-137, observed in the crystal structure of the isolated N-terminal domain of PTH1, is likely to be present in the full length receptor where it provides an important affinity- and potency-generating interaction through a salt bridge.


Subject(s)
Parathyroid Hormone/chemistry , Receptor, Parathyroid Hormone, Type 1/chemistry , Arginine/chemistry , Arginine/genetics , Arginine/metabolism , Aspartic Acid/chemistry , Aspartic Acid/genetics , Aspartic Acid/metabolism , HEK293 Cells , Humans , Parathyroid Hormone/genetics , Parathyroid Hormone/metabolism , Protein Structure, Quaternary , Protein Structure, Tertiary , Receptor, Parathyroid Hormone, Type 1/genetics , Receptor, Parathyroid Hormone, Type 1/metabolism , Static Electricity
8.
J Biomol Screen ; 18(5): 599-609, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23396314

ABSTRACT

A variety of G-protein-coupled receptor (GPCR) screening technologies have successfully partnered a number of GPCRs with their cognate ligands. GPCR-mediated ß-arrestin recruitment is now recognized as a distinct intracellular signaling pathway, and ligand-receptor interactions may show a bias toward ß-arrestin over classical GPCR signaling pathways. We hypothesized that the failure to identify native ligands for the remaining orphan GPCRs may be a consequence of biased ß-arrestin signaling. To investigate this, we assembled 10 500 candidate ligands and screened 82 GPCRs using PathHunter ß-arrestin recruitment technology. High-quality screening assays were validated by the inclusion of liganded receptors and the detection and confirmation of these established ligand-receptor pairings. We describe a candidate endogenous orphan GPCR ligand and a number of novel surrogate ligands. However, for the majority of orphan receptors studied, measurement of ß-arrestin recruitment did not lead to the identification of cognate ligands from our screening sets. ß-Arrestin recruitment represents a robust GPCR screening technology, and ligand-biased signaling is emerging as a therapeutically exploitable feature of GPCR biology. The identification of cognate ligands for the orphan GPCRs and the extent to which receptors may exist to preferentially signal through ß-arrestin in response to their native ligand remain to be determined.


Subject(s)
Arrestins/metabolism , High-Throughput Screening Assays/methods , Receptors, G-Protein-Coupled/agonists , Animals , CHO Cells , Cells, Cultured , Cricetinae , Cricetulus , Drug Discovery/methods , HEK293 Cells , Humans , Ligands , Protein Binding/physiology , Receptors, G-Protein-Coupled/metabolism , Saccharomyces cerevisiae , Small Molecule Libraries/analysis , beta-Arrestins
9.
J Med Chem ; 53(21): 7778-95, 2010 Nov 11.
Article in English | MEDLINE | ID: mdl-20942472

ABSTRACT

Histamine H(1) and serotonin 5-HT(2A) receptors mediate two different mechanisms involved in sleep regulation: H(1) antagonists are sleep inducers, while 5-HT(2A) antagonists are sleep maintainers. Starting from 9'a, a novel spirotetracyclic compound endowed with good H(1)/5-HT(2A) potency but poor selectivity, very high Cli, and a poor P450 profile, a specific optimization strategy was set up. In particular, we investigated the possibility of introducing appropriate amino acid moieties to optimize the developability profile of the series. Following this zwitterionic approach, we were able to identify several advanced leads (51, 65, and 73) with potent dual H(1)/5-HT(2A) activity and appropriate developability profiles. These compounds exhibited efficacy as hypnotic agents in a rat telemetric sleep model with minimal effective doses in the range 3-10 mg/kg po.


Subject(s)
Heterocyclic Compounds, 4 or More Rings/chemical synthesis , Histamine H1 Antagonists/chemical synthesis , Hypnotics and Sedatives/chemical synthesis , Receptor, Serotonin, 5-HT2A/metabolism , Serotonin 5-HT2 Receptor Antagonists/chemical synthesis , Sleep/drug effects , Spiro Compounds/chemical synthesis , Animals , Biological Availability , Brain/metabolism , Cell Line , Cerebral Cortex/metabolism , Cricetinae , Cricetulus , Heterocyclic Compounds, 4 or More Rings/chemistry , Heterocyclic Compounds, 4 or More Rings/pharmacology , Histamine H1 Antagonists/chemistry , Histamine H1 Antagonists/pharmacology , Humans , Hypnotics and Sedatives/chemistry , Hypnotics and Sedatives/pharmacology , Male , Microsomes, Liver/metabolism , Radioligand Assay , Rats , Rats, Sprague-Dawley , Serotonin 5-HT2 Receptor Antagonists/chemistry , Serotonin 5-HT2 Receptor Antagonists/pharmacology , Sleep Wake Disorders/drug therapy , Spiro Compounds/chemistry , Spiro Compounds/pharmacology , Stereoisomerism , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 20(17): 5069-73, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20674357

ABSTRACT

A novel imidazobenzazepine template (5a) with potent dual H(1)/5-HT(2A) antagonist activity was identified. Application of a zwitterionic approach to this poorly selective and poorly developable starting point successfully delivered a class of high quality leads, 3-[4-(3-R(1)-2-R-5H-imidazo[1,2-b][2]benzazepin-11-yl)-1-piperazinyl]-2,2-dimethylpropanoic acids (e.g., 9, 19, 20, and 21), characterized by potent and balanced H(1)/5-HT(2A) receptor antagonist activities and good developability profiles.


Subject(s)
Receptor, Serotonin, 5-HT1A/drug effects , Receptor, Serotonin, 5-HT2A/drug effects , Serotonin Antagonists/therapeutic use , Sleep Wake Disorders/drug therapy , Humans
12.
Biochem Biophys Res Commun ; 391(1): 437-42, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-19914210

ABSTRACT

The receptor for calcitonin gene-related peptide (CGRP) has been the target for the development of novel small molecule antagonists for the treatment of migraine. Two such antagonists, BIBN4096BS and MK-0974, have shown great promise in clinical trials and hence a deeper understanding of the mechanism of their interaction with the receptor is now required. The structure of the CGRP receptor is unusual since it is comprised of a hetero-oligomeric complex between the calcitonin receptor-like receptor (CRL) and an accessory protein (RAMP1). Both the CLR and RAMP1 components have extracellular domains which interact with each other and together form part of the peptide-binding site. It seems likely that the antagonist binding site will also be located on the extracellular domains and indeed Trp-74 of RAMP1 has been shown to form part of the binding site for BIBN4096BS. However, despite a chimeric study demonstrating the role of the N-terminal domain of CLR in antagonist binding, no specific residues have been identified. Here we carry out a mutagenic screen of the extreme N-terminal domain of CLR (residues 23-63) and identify a mutant, Met-42-Ala, which displays 48-fold lower affinity for BIBN4096BS and almost 900-fold lower affinity for MK-0974. In addition, we confirm that the Trp-74-Lys mutation at human RAMP1 reduces BIBN4096BS affinity by over 300-fold and show for the first time a similar effect for MK-0974 affinity. The data suggest that the non-peptide antagonists occupy a binding site close to the interface of the N-terminal domains of CLR and RAMP1.


Subject(s)
Azepines/metabolism , Calcitonin Gene-Related Peptide Receptor Antagonists , Imidazoles/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Piperazines/metabolism , Quinazolines/metabolism , Receptors, Calcitonin/metabolism , Azepines/chemistry , Azepines/pharmacology , Calcitonin Receptor-Like Protein , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Methionine/genetics , Methionine/metabolism , Piperazines/chemistry , Piperazines/pharmacology , Protein Structure, Tertiary , Quinazolines/chemistry , Quinazolines/pharmacology , Receptor Activity-Modifying Protein 1 , Receptor Activity-Modifying Proteins , Receptors, Calcitonin/genetics , Tryptophan/genetics , Tryptophan/metabolism
13.
J Med Chem ; 52(3): 818-25, 2009 Feb 12.
Article in English | MEDLINE | ID: mdl-19146417

ABSTRACT

The novel 7-transmembrane receptor MrgX1 is located predominantly in the dorsal root ganglion and has consequently been implicated in the perception of pain. Here we describe the discovery and optimization of a small molecule agonist and initial docking studies of this ligand into the receptor in order to provide a suitable lead and tool compound for the elucidation of the physiological function of the receptor.


Subject(s)
Piperazines/chemical synthesis , Pyridazines/chemical synthesis , Receptors, G-Protein-Coupled/agonists , Biphenyl Compounds/chemical synthesis , Biphenyl Compounds/pharmacology , Calcium/metabolism , Combinatorial Chemistry Techniques , Drug Design , Humans , Piperazines/pharmacology , Pyridazines/pharmacology , Receptors, G-Protein-Coupled/physiology , Structure-Activity Relationship
14.
Mol Pharmacol ; 74(3): 605-13, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18539702

ABSTRACT

Parathyroid hormone (PTH) and parathyroid hormone-related peptide (PTHrP) bind and activate the PTH/PTHrP receptor (PTH-1R). However, while the related receptor PTH-2R responds potently to PTH, it is not activated by PTHrP. Two hormone sites are known to be responsible for these different potencies. First, the absence of efficacy for PTHrP at PTH-2R is due to the presence of His-5 in PTHrP (Ile-5 in PTH), which interacts with the receptor's juxtamembrane domain. Second, PTHrP has lower affinity than PTH for PTH-2R because of the presence of Phe-23 (Trp-23 in PTH), which interacts with the receptor's N-terminal extracellular domain. We used these different receptor subtype properties to demonstrate that residue 41 in PTH-1R, when either the native Leu or substituted by Ile or Met, can accommodate either Phe or Trp at position 23 of the ligand. However, when Leu-41 is substituted by a smaller side chain, either Ala or Val (its equivalent residue in PTH-2R), the receptor becomes highly selective for those peptide ligands with Trp-23. Hence, despite the conservative nature of the substitutions found in the native ligands (Phe for Trp) and receptors (Leu for Val), they nevertheless enable a significant degree of selectivity to be achieved. Analysis of this functionally important ligand-receptor contact, within the context of the recent X-ray structure of the peptide-bound PTH-1R N domain, reveals the nature of the selectivity filter and how it is by-passed in PTH-1R.


Subject(s)
Amino Acids/metabolism , Receptors, Parathyroid Hormone/chemistry , Receptors, Parathyroid Hormone/metabolism , Amino Acid Sequence , Binding, Competitive , Cell Line , Cell Membrane/metabolism , Crystallography, X-Ray , Humans , Ligands , Molecular Sequence Data , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Peptides/chemistry , Peptides/metabolism , Protein Structure, Tertiary , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Structure-Activity Relationship
15.
J Biol Chem ; 278(13): 11312-9, 2003 Mar 28.
Article in English | MEDLINE | ID: mdl-12496283

ABSTRACT

GPR41 and GPR43 are related members of a homologous family of orphan G protein-coupled receptors that are tandemly encoded at a single chromosomal locus in both humans and mice. We identified the acetate anion as an agonist of human GPR43 during routine ligand bank screening in yeast. This activity was confirmed after transient transfection of GPR43 into mammalian cells using Ca(2+) mobilization and [(35)S]guanosine 5'-O-(3-thiotriphosphate) binding assays and by coexpression with GIRK G protein-regulated potassium channels in Xenopus laevis oocytes. Other short chain carboxylic acid anions such as formate, propionate, butyrate, and pentanoate also had agonist activity. GPR41 is related to GPR43 (52% similarity; 43% identity) and was activated by similar ligands but with differing specificity for carbon chain length, with pentanoate being the most potent agonist. A third family member, GPR42, is most likely a recent gene duplication of GPR41 and may be a pseudogene. GPR41 was expressed primarily in adipose tissue, whereas the highest levels of GPR43 were found in immune cells. The identity of the cognate physiological ligands for these receptors is not clear, although propionate is known to occur in vivo at high concentrations under certain pathophysiological conditions.


Subject(s)
Carboxylic Acids/pharmacology , Propionates/pharmacology , Receptors, Cell Surface/agonists , Receptors, G-Protein-Coupled , Amino Acid Sequence , Animals , DNA Primers , Humans , Immunohistochemistry , Molecular Sequence Data , Receptors, Cell Surface/metabolism , Recombinant Proteins/drug effects , Recombinant Proteins/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...