Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 32(1): 162-70, 2003.
Article in English | MEDLINE | ID: mdl-12549555

ABSTRACT

The Willamette Valley of Oregon has extensive areas of poorly drained, commercial grass seed lands. Little is know about the ability of riparian areas in these settings to reduce nitrate in water draining from grass seed fields. We established two study sites with similar soils and hydrology but contrasting riparian vegetation along an intermittent stream that drains perennial ryegrass (Lolium perenne L.) fields in the Willamette Valley of western Oregon. We installed a series of nested piezometers along three transects at each site to examine NO3-N in shallow ground water in grass seed fields and riparian areas. Results showed that a noncultivated riparian zone comprised of grasses and herbaceous vegetation significantly reduced NO3-N concentrations of shallow ground water moving from grass seed fields. Darcy's law-based estimates of shallow ground water flow through riparian zone A/E horizons revealed that this water flowpath could account for only a very small percentage of the streamflow. Even though there is great potential for NO3-N to be reduced as water moves through the noncultivated riparian zone with grass-herbaceous vegetation, the potential was not fully realized because only a small proportion of the stream flow interacts with riparian zone soils. Consequently, effective NO3-N water quality management in poorly drained landscapes similar to the study watershed is primarily dependent on implementation of sound agricultural practices within grass seed fields and is less influenced by riparian zone vegetation. Wise fertilizer application rates and timing are key management tools to reduce export of NO3-N in stream waters.


Subject(s)
Agriculture , Lolium/physiology , Models, Theoretical , Nitrates/pharmacokinetics , Nitrogen/pharmacokinetics , Water Pollution/prevention & control , Biodegradation, Environmental , Ecosystem , Fertilizers , Lolium/chemistry , Nitrates/isolation & purification , Nitrogen/isolation & purification , Rain , Trees , Water Movements , Water Supply
2.
J Environ Qual ; 32(1): 171-9, 2003.
Article in English | MEDLINE | ID: mdl-12549556

ABSTRACT

Little is known about the occurrence and distribution of the herbicide diuron [3-(3,4-dichlorophenyl)-1,1-dimethyl urea] in soil, ground water, and surface water in areas affected by grass-seed production. A field study was designed to investigate the occurrence and distribution of diuron and its transformation products at a poorly drained field site located along an intermittent tributary of Lake Creek in the southern Willamette Valley of Oregon. The experimental sites consisted of a field under commercial grass seed production with a cultivated riparian zone and a second site that was part of the same grass seed field but with a noncultivated riparian zone. Diuron and its transformation product DCPMU [3-(3,4-dichlorophenyl)-1-methylurea] were the only significant residues detected in this study. Concentrations of diuron in surface water declined from a maximum of 28 microg/L immediately following application to low levels that persisted as long as flow was present. Diuron and DCPMU concentrations in shallow ground water (15-36 cm below ground surface) were highest (2-13 microg/L) in the zone immediately adjacent (0.5 m) to Lake Creek and indicated the influence of stream water on shallow ground water near the stream. Diuron and DCPMU detected in soil prior to the second season's application indicated the persistence of diuron and DCPMU from the previous year's application. Surface runoff during the rainy season removes only a very small percentage (<1%) of the applied herbicide. In addition, no evidence was obtained for the downward transport of diuron or its transformation products to deep ground water.


Subject(s)
Diuron/analysis , Herbicides/analysis , Poaceae , Soil Pollutants/analysis , Water Pollutants, Chemical/analysis , Ecosystem , Environmental Monitoring , Seeds , Trees , Water Movements
3.
Environ Pollut ; 78(1-3): 29-35, 1992.
Article in English | MEDLINE | ID: mdl-15091924

ABSTRACT

Episodic acidification is practically a ubiquitous process in streams and drainage lakes in Canada, Europe and the United States. Depressions of pH are often smaller in systems with low pre-episode pH levels. Studies on European surface waters have reported episodes most frequently with minimum pH levels below 4.5. In Canada and the United States, studies have also reported a number of systems that have had minimum pH levels below 4.5. In all areas, change in water flowpath during hydrological events is a major determinant of episode characteristics. Episodic acidification is also controlled by a combination of other natural and anthropogenic factors. Base cation decreases are an important contributor to episodes in circumneutral streams and lakes. Sulphate pulses are generally important contributors to episodic acidification in Europe and Canada. Nitrate pulses are generally more important to episodic acidification in the Northeast United States. Increases in organic acids contribute to episodes in some streams in all areas. The sea-salt effect is important in near-coastal streams and lakes. In Canada, Europe and the United States, acidic deposition has increased the severity (minimum pH reached) of episodes in some streams and lakes.

4.
Environ Pollut ; 77(2-3): 287-95, 1992.
Article in English | MEDLINE | ID: mdl-15091970

ABSTRACT

Field studies of chemical changes in surface waters associated with rainfall and snowmelt events have provided evidence of episodic acidification of lakes and streams in Europe and North America. Modelling these chemical changes is particularly challenging because of the variability associated with hydrological transport and chemical transformation processes in catchments. This paper provides a review of mathematical models that have been applied to the problem of episodic acidification. Several empirical approaches, including regression models, mixing models and time series models, support a strong hydrological interpretation of episodic acidification. Regional application of several models has suggested that acidic episodes (in which the acid neutralizing capacity becomes negative) are relatively common in surface waters in several regions of the US that receive acid deposition. Results from physically based models have suggested a lack of understanding of hydrological flowpaths, hydraulic residence times and biogeochemical reactions, particularly those involving aluminum. The ability to better predict episodic chemical responses of surface waters is thus dependent upon elucidation of these and other physical and chemical processes.

SELECTION OF CITATIONS
SEARCH DETAIL
...