Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Foods ; 13(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611345

ABSTRACT

Inulin, a non-digestible polysaccharide, has gained attention for its prebiotic properties, particularly in the context of obesity, a condition increasingly understood as a systemic inflammatory state linked to gut microbiota composition. This study investigates the short-term protective effects of inulin with different degrees of polymerization (DPn) against metabolic health deterioration and gut microbiota alterations induced by a high-fat diet (HFD) in Sprague Dawley rats. Inulin treatments with an average DPn of 7, 14, and 27 were administered at 1 g/kg of bodyweight to HFD-fed rats over 21 days. Body weight, systemic glucose levels, and proinflammatory markers were measured to assess metabolic health. Gut microbiota composition was analyzed through 16S rRNA gene sequencing. The results showed that inulin27 significantly reduced total weight gain and systemic glucose levels, suggesting a DPn-specific effect on metabolic health. The study also observed shifts in gut microbial populations, with inulin7 promoting several beneficial taxa from the Bifidobacterium genera, whilst inducing a unique microbial composition compared to medium-chain (DPn 14) and long-chain inulin (DPn: 27). However, the impact of inulin on proinflammatory markers and lipid metabolism parameters was not statistically significant, possibly due to the short study duration. Inulin with a higher DPn has a more pronounced effect on mitigating HFD-induced metabolic health deterioration, whilst inulin7 is particularly effective at inducing healthy microbial shifts. These findings highlight the benefits of inulin as a dietary adjuvant in obesity management and the importance of DPn in optimizing performance.

2.
Brain Behav Immun ; 115: 13-25, 2024 01.
Article in English | MEDLINE | ID: mdl-37757978

ABSTRACT

The gastrointestinal microbiota has received increasing recognition as a key mediator of neurological conditions with neuroinflammatory features, through its production of the bioactive metabolites, short-chain fatty acids (SCFAs). Although neuroinflammation is a hallmark shared by the neuropsychological complications of chemotherapy (including cognitive impairment, fatigue and depression), the use of microbial-based therapeutics has not previously been studied in this setting. Therefore, we aimed to investigate the effect of a high fibre diet known to modulate the microbiota, and its associated metabolome, on neuroinflammation caused by the common chemotherapeutic agent 5-fluorouracil (5-FU). Twenty-four female C57Bl/6 mice were treated with 5-FU (400 mg/kg, intraperitoneal, i.p.) or vehicle control, with or without a high fibre diet (constituting amylose starch; 4.7 % crude fibre content), given one week prior to 5-FU and until study completion (16 days after 5-FU). Faecal pellets were collected longitudinally for 16S rRNA gene sequencing and terminal SCFA concentrations of the caecal contents were quantified using gas chromatography-mass spectrometry (GC-MS). Neuroinflammation was determined by immunofluorescent analysis of astrocyte density (GFAP). The high fibre diet significantly altered gut microbiota composition, increasing the abundance of Bacteroidaceae and Akkermansiaceae (p < 0.0001 and p = 0.0179) whilst increasing the production of propionate (p = 0.0097). In the context of 5-FU, the diet reduced GFAP expression in the CA1 region of the hippocampus (p < 0.0001) as well as the midbrain (p = 0.0216). Astrocyte density negatively correlated with propionate concentrations and the abundance of Bacteroidaceae and Akkermansiaceae, suggesting a relationship between neuroinflammatory and gastrointestinal markers in this model. This study provides the first evidence of the neuroprotective effects of fibre via dietary intake in alleviating the neuroimmune changes seen in response to systemically administered 5-FU, indicating that the microbiota-gut-brain axis is a targetable mediator to reduce the neurotoxic effects of chemotherapy treatment.


Subject(s)
Neuroinflammatory Diseases , Propionates , Female , Animals , Mice , RNA, Ribosomal, 16S , Diet , Fluorouracil
3.
Int J Pharm ; 648: 123614, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37979632

ABSTRACT

Self-emulsifying drug delivery systems (i.e. SEDDS, SMEDDS and SNEDDS) are widely employed as solubility and bioavailability enhancing formulation strategies for poorly water-soluble drugs. Despite the capacity for SEDDS to effectively facilitate oral drug absorption, tolerability concerns exist due to the capacity for high concentrations of surfactants (typically present within SEDDS) to induce gastrointestinal toxicity and mucosal irritation. With new knowledge surrounding the role of the gut microbiota in modulating intestinal inflammation and mucosal injury, there is a clear need to determine the impact of SEDDS on the gut microbiota. The current study is the first of its kind to demonstrate the detrimental impact of SEDDS on the gut microbiota of Sprague-Dawley rats, following daily oral administration (100 mg/kg) for 21 days. SEDDS comprising a lipid phase (i.e. Type I, II and III formulations according to the Lipid Formulation Classification Scheme) induced significant changes to the composition and diversity of the gut microbiota, evidenced through a reduction in operational taxonomic units (OTUs) and alpha diversity (Shannon's index), along with statistically significant shifts in beta diversity (according to PERMANOVA of multi-dimensional Bray-Curtis plots). Key signatures of gut microbiota dysbiosis correlated with the increased expression of pro-inflammatory cytokines within the jejunum, while mucosal injury was characterised by significant reductions in plasma citrulline levels, a validated biomarker of enterocyte mass and mucosal barrier integrity. These findings have potential clinical ramifications for chronically administered drugs that are formulated with SEDDS and stresses the need for further studies that investigate dose-dependent effects of SEDDS on the gastrointestinal microenvironment in a clinical setting.


Subject(s)
Gastrointestinal Microbiome , Rats , Animals , Rats, Sprague-Dawley , Chemistry, Pharmaceutical/methods , Drug Delivery Systems/methods , Pharmaceutical Preparations , Administration, Oral , Biological Availability , Solubility , Lipids , Emulsions
4.
Pharmaceutics ; 15(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37111523

ABSTRACT

Intracellular bacteria are inaccessible and highly tolerant to antibiotics, hence are a major contributor to the global challenge of antibiotic resistance and recalcitrant clinical infections. This, in tandem with stagnant antibacterial discovery, highlights an unmet need for new delivery technologies to treat intracellular infections more effectively. Here, we compare the uptake, delivery, and efficacy of rifampicin (Rif)-loaded mesoporous silica nanoparticles (MSN) and organo-modified (ethylene-bridged) MSN (MON) as an antibiotic treatment against small colony variants (SCV) Staphylococcus aureus (SA) in murine macrophages (RAW 264.7). Macrophage uptake of MON was five-fold that of equivalent sized MSN and without significant cytotoxicity on human embryonic kidney cells (HEK 293T) or RAW 264.7 cells. MON also facilitated increased Rif loading with sustained release, and seven-fold increased Rif delivery to infected macrophages. The combined effects of increased uptake and intracellular delivery of Rif by MON reduced the colony forming units of intracellular SCV-SA 28 times and 65 times compared to MSN-Rif and non-encapsulated Rif, respectively (at a dose of 5 µg/mL). Conclusively, the organic framework of MON offers significant advantages and opportunities over MSN for the treatment of intracellular infections.

5.
J Colloid Interface Sci ; 641: 36-47, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36924544

ABSTRACT

The inhalable administration of lipid nanoparticles is an effective strategy for localised delivery of therapeutics against various lung diseases. Of this, improved intracellular delivery of pharmaceuticals for infectious disease and cancer management is of high significance. However, the influence of lipid nanoparticle composition and structure on uptake in pulmonary cell lines, especially in the presence of biologically relevant media is poorly understood. Here, the uptake of lamellar (liposomes) versus non-lamellar (cubosomes) lipid nanoparticles in macrophages and lung epithelial cells was quantified and the influence of bronchoalveolar lavage fluid (BALF), containing native pulmonary protein and surfactant molecules is determined. Cubosome uptake in both macrophages and epithelial cells was strongly mediated by a high percentage of molecular function regulatory and binding proteins present within the protein corona. In contrast, the protein corona did not influence the uptake of liposomes in epithelial cells. In macrophages, the proteins mediated a rapid internalisation, followed by exocytosis of liposomes after 6 h incubation. These findings on the influence of biological fluid in regulating lipid nanoparticle uptake mechanisms may guide future development of optimal intracellular delivery systems for therapeutics via the pulmonary route.


Subject(s)
Nanoparticles , Protein Corona , Liposomes/chemistry , Protein Corona/chemistry , Adsorption , Lung/metabolism , Proteins/chemistry , Nanoparticles/chemistry , Lipids/chemistry
6.
Pharmaceutics ; 15(2)2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36839628

ABSTRACT

Cutaneous chronic wounds impose a silent pandemic that affects the lives of millions worldwide. The delayed healing process is usually complicated by opportunistic bacteria that infect wounds. Staphylococcus aureus is one of the most prevalent bacteria in infected cutaneous wounds, with the ability to form antibiotic-resistant biofilms. Recently, we have demonstrated the potential of gallium protoporphyrin lipid liquid crystalline nanoparticles (GaPP-LCNP) as a photosensitizer against S. aureus biofilms in vitro. Herein, we investigate the potential of GaPP-LCNP using a pre-clinical model of infected cutaneous wounds. GaPP-LCNP showed superior antibacterial activity compared to unformulated GaPP, reducing biofilm bacterial viability by 5.5 log10 compared to 2.5 log10 in an ex vivo model, and reducing bacterial viability by 1 log10 in vivo, while unformulated GaPP failed to reduce bacterial burden. Furthermore, GaPP-LCNP significantly promoted wound healing through reduction in the bacterial burden and improved early collagen deposition. These findings pave the way for future pre-clinical investigation and treatment optimizations to translate GaPP-LCNP towards clinical application.

7.
ACS Biomater Sci Eng ; 9(6): 2857-2867, 2023 06 12.
Article in English | MEDLINE | ID: mdl-33908245

ABSTRACT

Nanoparticulate formulations are being developed toward enhancing the bioavailability of orally administrated biologics. However, the processes mediating particulate carriers' intestinal uptake and transport remains to be fully elucidated. Herein, an optical clearing-based whole tissue mount/imaging strategy was developed to enable high quality microscopic imaging of intestinal specimens. It enabled the distribution of nanoparticles within intestinal villi to be quantitatively analyzed at a cellular level. Two-hundred and fifty nm fluorescent polystyrene nanoparticles were modified with polyethylene glycol (PEG), Concanavalin A (ConA), and pectin to yield mucopenetrating, enterocyte targeting, and mucoadhesive model nanocarriers, respectively. Introducing ConA on the PEGylated nanoparticles significantly increased their uptake in the intestinal epithelium (∼4.16 fold for 200 nm nanoparticle and ∼2.88 fold for 50 nm nanoparticles at 2 h). Moreover, enterocyte targeting mediated the trans-epithelial translocation of 50 nm nanoparticles more efficiently than that of the 200 nm nanoparticles. This new approach provides an efficient methodology to obtain detailed insight into the transcytotic activity of enterocytes as well as the barrier function of the constitutive intestinal mucus. It can be applied to guide the rational design of particulate formulations for more efficient oral biologics delivery.


Subject(s)
Intestinal Mucosa , Transcytosis , Humans , Caco-2 Cells , Intestinal Mucosa/metabolism , Intestinal Absorption , Mucus
8.
Drug Deliv Transl Res ; 13(4): 1088-1101, 2023 04.
Article in English | MEDLINE | ID: mdl-36520273

ABSTRACT

The gastrointestinal mucus barrier is a widely overlooked yet essential component of the intestinal epithelium, responsible for the body's protection against harmful pathogens and particulates. This, coupled with the increasing utilisation of biological molecules as therapeutics (e.g. monoclonal antibodies, RNA vaccines and synthetic proteins) and nanoparticle formulations for drug delivery, necessitates that we consider the additional absorption barrier that the mucus layer may pose. It is imperative that in vitro permeability methods can accurately model this barrier in addition to standardised cellular testing. In this study, a mucus-on-a-chip (MOAC) microfluidic device was engineered and developed to quantify the permeation kinetics of nanoparticles through a biorelevant synthetic mucus layer. Three equivalently sized nanoparticle systems, formulated from chitosan (CSNP), mesoporous silica (MSNP) and poly (lactic-co-glycolic) acid (PLGA-NP) were prepared to encompass various surface chemistries and nanostructures and were assessed for their mucopermeation within the MOAC. Utilising this device, the mucoadhesive behaviour of chitosan nanoparticles was clearly visualised, a phenomenon not often observed via standard permeation models. In contrast, MSNP and PLGA-NP displayed mucopermeation, with significant differences in permeation pattern due to specific mucus-nanoparticle binding. Further optimisation of the MOAC to include a more biorelevant mucus mimic resulted in 5.5-fold hindered PLGA-NP permeation compared to a mucin solution. Furthermore, tracking of PLGA-NP at a single nanoparticle resolution revealed rank-order correlations between particle diffusivity and MOAC permeation. This device, including utilisation of biosimilar mucus, provides a unique ability to quantify both mucoadhesion and mucopenetration of nano-formulations and elucidate mucus binding interactions on a microscopic scale.


Subject(s)
Chitosan , Nanoparticles , Microfluidics , Chitosan/chemistry , Mucus/chemistry , Mucus/metabolism , Drug Delivery Systems , Intestinal Mucosa/metabolism , Nanoparticles/chemistry , Drug Carriers/chemistry
9.
Cancer Chemother Pharmacol ; 90(3): 267-278, 2022 09.
Article in English | MEDLINE | ID: mdl-35962138

ABSTRACT

INTRODUCTION: Gastrointestinal mucositis (GIM) is a side effect of high-dose irinotecan (CPT-11), causing debilitating symptoms that are often poorly managed. The role of TLR4 in the development of GIM has been clearly demonstrated. We, therefore, aimed to investigate the potential of the TLR4 antagonist, IAXO-102, to attenuate gastrointestinal inflammation as well as supress tumour activity in a colorectal-tumour-bearing mouse model of GIM induced by CPT-11. METHODS: 24 C57BL/6 mice received a vehicle, daily i.p. IAXO-102 (3 mg/kg), i.p. CPT-11 (270 mg/kg) or a combination of CPT-11 and IAXO-102. GIM was assessed using validated toxicity markers. At 72 h, colon and tumour tissue were collected and examined for histopathological changes and RT-PCR for genes of interest; TLR4, MD-2, CD-14, MyD88, IL-6, IL-6R, CXCL2, CXCR1, and CXCR2. RESULTS: IAXO-102 prevented diarrhoea in mice treated with CPT-11. Tumour volume in IAXO-102-treated mice was lower compared to vehicle at 48 h (P < 0.05). There were no differences observed in colon and tumour weights between the treatment groups. Mice who received the combination treatment had improved tissue injury score (P < 0.05) in the colon but did not show any improvements in cell proliferation or apoptotic rate. Expression of all genes was similar across all treatment groups in the tumour (P > 0.05). In the colon, there was a difference in transcript expression in vehicle vs. IAXO-102 (P < 0.05) and CPT-11 vs. combination (P < 0.01) in MD-2 and IL-6R, respectively. CONCLUSION: IAXO-102 was able to attenuate symptomatic parameters of GIM induced by CPT-11 as well as reduce tissue injury in the colon. However, there was no effect on cell proliferation and apoptosis. As such, TLR4 activation plays a partial role in GIM development but further research is required to understand the specific inflammatory signals underpinning tissue-level changes.


Subject(s)
Antineoplastic Agents , Mucositis , Toll-Like Receptor 4 , Amino Sugars/pharmacology , Animals , Antineoplastic Agents/toxicity , Disease Models, Animal , Glycolipids/pharmacology , Irinotecan/adverse effects , Mice , Mice, Inbred C57BL , Mucositis/chemically induced , Toll-Like Receptor 4/antagonists & inhibitors
10.
Neoplasia ; 30: 100806, 2022 08.
Article in English | MEDLINE | ID: mdl-35561424

ABSTRACT

BACKGROUND: Neratinib is a pan-ErbB tyrosine kinase inhibitor used for extended adjuvant treatment of HER2-positive breast cancer. Diarrhea is the main adverse event associated with neratinib treatment. We aimed here to determine whether antibiotic-induced gut microbial shifts altered development of neratinib-induced diarrhea. METHODS: Female Albino Wistar rats (total n = 44) were given antibiotics (vancomycin, neomycin, or a cocktail of vancomycin, neomycin and ampicillin) in drinking water for four weeks, and then treated daily with neratinib (50 mg/kg) for 28 days. Diarrhea, along with markers of gastrointestinal damage and microbial alterations were measured by histopathology and 16S sequencing, respectively. RESULTS: Rats treated with vancomycin or neomycin had significantly lower levels of diarrhea than rats treated with neratinib alone. In the distal ileum, neratinib was associated with a statistically significant increase in histological damage in all treatment groups expect the antibiotic cocktail. Key features included villous blunting and fusion and some inflammatory infiltrate. Differences in microbial composition at necropsy in vehicle control, neratinib and neratinib + neomycin groups, were characterized by a neratinib-induced increase in gram-negative bacteria that was reversed by neomycin. Neomycin shifted bacterial composition so that Blautia become the dominant genus. CONCLUSIONS: Narrow spectrum antibiotics reduced neratinib-induced diarrhea. This suggests that the microbiome may play a key role in the development and prolongation of diarrhea following neratinib treatment, although further research is required to understand the key bacteria and mechanisms by which they reduce diarrhea, as well as how this may impact presentation of diarrhea in clinical cohorts.


Subject(s)
Breast Neoplasms , Quinolines , Animals , Anti-Bacterial Agents/adverse effects , Breast Neoplasms/pathology , Diarrhea/chemically induced , Diarrhea/drug therapy , Diarrhea/prevention & control , Female , Gram-Negative Bacteria , Humans , Neomycin/adverse effects , Quinolines/pharmacology , Rats , Receptor, ErbB-2 , Vancomycin/adverse effects
11.
ACS Infect Dis ; 8(4): 841-854, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35255215

ABSTRACT

Chronic Pseudomonas aeruginosa wound infections are highly prevalent and often untreatable due to biofilm formation, resulting in high antimicrobial tolerance. Standard antibiotic therapy for P. aeruginosa infections involves tobramycin, yet it is highly ineffective as monotherapy as tobramycin cannot penetrate the biofilm to elicit its antimicrobial effect. Lipid liquid crystal nanoparticles (LCNPs) have previously been shown to increase the antimicrobial efficacy and penetration of tobramycin against P. aeruginosa biofilms in vitro and ex vivo. Here, for the first time, we have developed a chronic P. aeruginosa biofilm infection in full-thickness wounds in mice to examine the potential of LCNPs to improve the effect of tobramycin, preclinically. After three doses, administered once a day, tobramycin-LCNPs significantly reduced the P. aeruginosa bacterial load in murine wounds 1000-fold more than unformulated tobramycin, which in turn showed no significant difference to the saline control treatment. Consistent with the improved P. aeruginosa eradication, the tobramycin-LCNPs promoted wound healing. In comparison to previous in vitro and ex vivo data, we show a strong in vitro-in vivo correlation between P. aeruginosa biofilm infection models. The enhanced activity of tobramycin-LCNPs in vivo in the preclinical murine model demonstrates the strong potential of LCNPs as a next-generation formulation approach to improve the efficacy of tobramycin against P. aeruginosa biofilm wound infections.


Subject(s)
Liquid Crystals , Nanoparticles , Pseudomonas Infections , Wound Infection , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Disease Models, Animal , Mice , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa , Tobramycin/pharmacology , Wound Infection/drug therapy
12.
Nanomedicine ; 42: 102536, 2022 06.
Article in English | MEDLINE | ID: mdl-35202839

ABSTRACT

Bacterial biofilm infections tolerate high concentrations of antibiotics and are insidiously challenging to treat. Liquid crystal nanoparticles (LCNPs) advance the efficacy of tobramycin in biofilm-related infections by increasing the penetration of antibiotics across the biofilm matrix. Herewith, we develop the LCNPs as a platform technology, demonstrating that the LCNPs can increase the efficacy of two antibiotic classes (i.e. aminoglycosides and colistin) in P. aeruginosa biofilm infections. In C. elegans, the LCNPs potentiated the antimicrobial effect and significantly improved the survival of the nematodes. In mice with a full-thickness excisional wound, LCNPs were non-toxic and did not impair wound repair. Compared to the unformulated antibiotic treatment, tobramycin-LCNPs reduced the chronic bacterial load by 100-fold in the wound. This was also emulated in an ex vivo P. aeruginosa porcine wound infection model. The LCNPs represent a versatile platform technology that improves the efficacy of cationic antibiotics against biofilm infections utilizing multiple administration routes.


Subject(s)
Anti-Infective Agents , Liquid Crystals , Nanoparticles , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Biofilms , Caenorhabditis elegans , Cations , Mice , Pseudomonas aeruginosa , Swine , Tobramycin/pharmacology
13.
Int J Pharm ; 612: 121382, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34919999

ABSTRACT

Cromoglycate is a mast cell stabiliser typically administered via inhalation or intranasally for the treatment of allergy-based respiratory issues. Oral dosing of cromoglycate remains challenging due to its high solubility but low permeability across epithelial membranes in the gastrointestinal tract: effective formulation strategies are clearly needed. Here, we investigate and preclinically develop chitosan-cromoglycate complexes and associated nano/microparticle formulations with muco-adhesive and permeation enhancing capabilities to overcome the biopharmaceutical challenges for oral dosing.The synthesized complexes were optimized with respect to chitosan grade, particle size, and drug loading and demonstrated up to a 9.3-fold enhancement in permeability across a Caco-2 monolayer for chitosan-cromoglycate particles, compared to the pure drug. This increased intestinal permeability led to improved pharmacokinetic performance of cromoglycate, e.g. up to 1.82-fold increase in relative oral bioavailability when dosed to Sprague-Dawley rats in a fasted state. These findings confirm the potential for chitosan particles to serve as an effective oral delivery vehicle for cromoglycate, with additional formulation optimization presenting the opportunity to reduce dosing frequency for treatment of allergy-based respiratory ailments.


Subject(s)
Chitosan , Nanoparticles , Administration, Oral , Animals , Biological Availability , Caco-2 Cells , Cromolyn Sodium , Drug Carriers , Humans , Mast Cell Stabilizers , Particle Size , Rats , Rats, Sprague-Dawley
14.
Int J Pharm ; 608: 121098, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34534629

ABSTRACT

Lurasidone is an important antipsychotic drug indicated for the treatment of schizophrenia and bipolar disorder, with an oral bioavailability of 9-19% owing to its poor aqueous solubility. Additionally, lurasidone exhibits a 2-fold positive food effect, such that patients must administer their medication with a meal, leading to significant non-compliance. The aim of this research was to evaluate the in vitro and in vivo performance of lurasidone when engineered as nanostructured systems. Specifically, a nanosuspension, nano-emulsion and silica-lipid hybrid (SLH) microparticles were formulated and the influence of composition and nanostructure on the mechanism of solubilisation was compared. Formulations were shown to enhance fasted state solubilisation levels in vitro by up to 5.9-fold, compared to pure drug. Fed- and fasted-state solubilisation profiles revealed that in contrast to the nanosuspension and nano-emulsion, lurasidone SLH mitigated the positive pharmaceutical effect of lurasidone. In vivo pharmacokinetic evaluations revealed that the nanosuspension, nano-emulsion and SLH enhanced the bioavailability of lurasidone by 3-fold, 2.4-fold and 8.8-fold, respectively, compared to pure drug after oral administration. For lurasidone, the combination of lipid-based nanostructure and porous silica nanostructure (SLH) led to optimal fasted state bioavailability which can ultimately result in enhanced treatment efficacy, easier dosing regimens and improved patient outcomes.


Subject(s)
Lurasidone Hydrochloride , Nanostructures , Administration, Oral , Biological Availability , Drug Compounding , Humans , Silicon Dioxide , Solubility
15.
Int J Pharm ; 594: 120167, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33309559

ABSTRACT

Diverse nanoparticulate systems have been engineered as vehicles towards enhancing the bioavailability of orally administrated vaccines. Substantial evidence suggests that targeting microfold cells (M cells) within Peyer's patches (PPs) is a prerequisite for vaccine-loaded nanocarriers to induce an effective antigen-specific immune response. Improved understanding of the contribution of M cells to sampling luminal nanoparticles into the underlying gut associated lymphoid tissues would accelerate the development of oral vaccine formulations. Herein, a novel clearing-based whole tissue mount/imaging technique was developed to enable the specific distribution of nanoparticles within ex vivo murine PPs to be quantitatively determined at the cellular level. This revealed that 200 nm nanoparticles modified with M cell targeting ligands (lectin Ulex europaeus agglutinin-1, UEA-1) were translocated into subepithelial domes 7.6 and 16.3 times greater than the non-targeted ones at 60 min and 120 min, respectively. This approach provides a new methodology to quantitatively investigate the transcytotic activity of M cells for particulate formulations, which may aid in the design of improved oral vaccines.


Subject(s)
Nanoparticles , Vaccines , Animals , Immunity, Mucosal , Intestinal Mucosa , Mice , Peyer's Patches
16.
Breast Cancer ; 28(1): 99-109, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32683606

ABSTRACT

BACKGROUND: Neratinib is a potent irreversible pan-ErbB tyrosine kinase inhibitor, approved by the FDA for extended adjuvant treatment of HER2-positive breast cancer. Diarrhea is the most frequently observed adverse event with tyrosine kinase inhibitor therapy. In this study, we developed a reproducible model for neratinib-induced diarrhea in male and female rats. METHODS: At first, male rats were treated with neratinib at 15, 30 or 50 mg/kg or vehicle control via oral gavage for 28 days (total n = 12). Secondly, we compared outcomes of male (n = 7) and female (n = 8) rats, treated with 50 mg/kg neratinib. RESULTS: Rats treated with a 50 mg/kg daily dose of neratinib had a reproducible and clinically relevant level of diarrhea and therefore was confirmed as an appropriate dose. Male rats treated with neratinib had significant changes to their gut microbiome. This included neratinib-induced increases in Ruminococcaceae (P = 0.0023) and Oscillospira (P = 0.026), and decreases in Blautia (P = 0.0002). On average, female rats experienced more significant neratinib-induced diarrhea (mean grade 1.526) compared with male rats (mean grade 1.182) (P < 0.0001). Neratinib caused a reduction in percentage weight gain after 28 days of treatment in females (P = 0.0018) compared with vehicle controls. Females and males both showed instances of villus atrophy and fusion, most severely in the distal ileum. Serum neratinib concentration was higher in female rats compared to male rats (P = 0.043). CONCLUSIONS: A reproducible diarrhea model was developed in both female and male rats, which indicated that diarrhea pathogenesis is multifactorial, including anatomical disruption particularly evident in the distal ileum, and alterations in microbial composition.


Subject(s)
Diarrhea/chemically induced , Gastrointestinal Microbiome/drug effects , Protein Kinase Inhibitors/adverse effects , Quinolines/adverse effects , Receptor, ErbB-2/antagonists & inhibitors , Animals , Breast Neoplasms/drug therapy , Diarrhea/blood , Diarrhea/microbiology , Diarrhea/pathology , Disease Models, Animal , Female , Humans , Ileum/drug effects , Ileum/microbiology , Ileum/pathology , Intestinal Mucosa/drug effects , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Male , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Quinolines/administration & dosage , Quinolines/pharmacokinetics , Rats , Sex Factors
17.
Pharmaceutics ; 13(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374233

ABSTRACT

Self-expanding metal stents (SEMSs) are currently the gold standard for the localised management of malignant gastrointestinal (GI) stenosis and/or obstructions. Despite encouraging clinical success, in-stent restenosis caused by tumour growth is a significant challenge. Incorporating chemotherapeutic drugs into GI stents is an emerging strategy to provide localised and sustained release of drugs to intestinal malignant tissues to prevent tumour growth. Therefore, the aim of this work was to develop and evaluate a local GI stent-based delivery system that provides a controlled release of 5-fluorouracil (5FU) over a course of several weeks to months, for the treatment of colorectal cancer and cancer-related stenosis/obstructions. The 5FU-loaded GI stents were fabricated via sequential dip-coating of commercial GI stents with a drug-loaded polyurethane (PU) basecoat and a drug-free poly(ethylene-co-vinyl acetate) (PEVA) topcoat. For comparison, two types of commercial stents were investigated, including bare and silicone (Si) membrane-covered stents. The physicochemical properties of the 5FU-loaded stents were evaluated using photoacoustic Fourier-transform infrared (PA-FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and thermal analysis. In vitro release studies in biological medium revealed that the 5FU-loaded stents provided a sustained release of drug over the period studied (18 d), and cell viability, cell cycle distribution and apoptosis assays showed that the released 5FU had comparable anticancer activity against human colon cancer cells (HCT-116) to pure 5FU. This study demonstrates that dip-coating is a facile and reliable approach for fabricating drug-eluting stents (DESs) that are promising candidates for the treatment of GI obstructions and/or restenosis.

18.
Nanomaterials (Basel) ; 10(4)2020 Apr 24.
Article in English | MEDLINE | ID: mdl-32344619

ABSTRACT

An urgent demand exists for the development of novel delivery systems that efficiently transport antibacterial agents across cellular membranes for the eradication of intracellular pathogens. In this study, the clinically relevant poorly water-soluble antibiotic, rifampicin, was confined within mesoporous silica nanoparticles (MSN) to investigate their ability to serve as an efficacious nanocarrier system against small colony variants of Staphylococcus aureus (SCV S. aureus) hosted within Caco-2 cells. The surface chemistry and particle size of MSN were varied through modifications during synthesis, where 40 nm particles with high silanol group densities promoted enhanced cellular uptake. Extensive biophysical analysis was performed, using quartz crystal microbalance with dissipation (QCM-D) and total internal reflection fluorescence (TIRF) microscopy, to elucidate the mechanism of MSN adsorption onto semi-native supported lipid bilayers (snSLB) and, thus, uncover potential cellular uptake mechanisms of MSN into Caco-2 cells. Such studies revealed that MSN with reduced silanol group densities were prone to greater particle aggregation on snSLB, which was expected to restrict endocytosis. MSN adsorption and uptake into Caco-2 cells correlated well with antibacterial efficacy against SCV S. aureus, with 40 nm hydrophilic particles triggering a ~2.5-log greater reduction in colony forming units, compared to the pure rifampicin. Thus, this study provides evidence for the potential to design silica nanocarrier systems with controlled surface chemistries that can be used to re-sensitise intracellular bacteria to antibiotics by delivering them to the site of infection.

19.
Int J Pharm ; 582: 119264, 2020 May 30.
Article in English | MEDLINE | ID: mdl-32278053

ABSTRACT

Abiraterone acetate (AbA) has an oral bioavailability of <10% due to its poor water solubility. Here we investigate the performance of silica-lipid hybrids (SLH) and supersaturated SLH (super-SLH) in improving oral bioavailability of AbA. Specifically, we investigate the influence of lipid type and AbA saturation level of the equilibrium solubility in the lipid (Seq), and explore in vitro-in vivo correlation (IVIVC). An oral pharmacokinetic study was conducted in fasted Sprague-Dawley rats. Suspensions of the formulations were administered via oral gavage at an AbA dose of 25 mg/kg. Plasma samples were collected and analyzed for drug content. SLH with a saturation level of 90% Seq enhanced the oral bioavailability of unformulated AbA by 31-fold, and super-SLH with saturation levels of 150, 200 and 250% Seq, enhanced the bioavailability by 11, 10 and 7-fold, respectively. In comparison with the commercial product Zytiga, SLH (90% Seq) increased the oral bioavailability 1.43-fold whereas super-SLH showed no improvement. A reasonable IVIVC existed between the performance of unformulated AbA, SLH and super-SLH, in the in vitro lipolysis and in vivo oral pharmacokinetic studies. SLH and super-SLH significantly enhanced the oral bioavailability of AbA. Additionally, supersaturation of SLH improved drug loading but did not correlate with enhanced AbA bioavailability.


Subject(s)
Abiraterone Acetate/administration & dosage , Abiraterone Acetate/pharmacokinetics , Drug Carriers , Lipids/chemistry , Silicon Dioxide/chemistry , Abiraterone Acetate/chemistry , Administration, Oral , Animals , Biological Availability , Drug Compounding , Drug Liberation , Gastrointestinal Absorption , Injections, Intravenous , Lipolysis , Male , Rats, Sprague-Dawley , Solubility
20.
Cancer Chemother Pharmacol ; 85(4): 793-803, 2020 04.
Article in English | MEDLINE | ID: mdl-32060615

ABSTRACT

PURPOSE: Lapatinib is a small molecule tyrosine kinase inhibitor used to treat breast cancer, often in combination with chemotherapy. Diarrhoea commonly occurs in up to 78% of patients undertaking lapatinib treatment. The mechanism of this diarrhoea is currently unknown. Elsiglutide is a GLP-2 analogue known to increase cell proliferation and reduce apoptosis in the intestine. METHODS: We used a previously developed rat model of lapatinib-induced diarrhoea to determine if co-treatment with elsiglutide was able to reduce diarrhoea caused by lapatinib. Additionally, we analysed the caecal microbiome of these rats to assess changes in the microbiome due to lapatinib. RESULTS: Rats treated with lapatinib and elsiglutide had less severe diarrhoea than rats treated with lapatinib alone. Serum lapatinib levels, blood biochemistry, myeloperoxidase levels and serum limulus amebocyte lysate levels were not significantly different between groups. Rats treated with lapatinib alone had significantly higher histopathological damage in the ileum than vehicle controls. This increase was not seen in rats also receiving elsiglutide. Rats receiving lapatinib alone had lower microbial diversity than rats who also received elsiglutide. CONCLUSIONS: Elsiglutide was able to reduce diarrhoea from lapatinib treatment. This does not appear to be via reduction in inflammation or barrier permeability, and may be due to thickening of mucosa, leading to increased surface area for fluid absorption in the distal small intestine. Microbial changes seen in this study require further research to fully elucidate their role in the development of diarrhoea.


Subject(s)
Antidiarrheals/pharmacology , Diarrhea/drug therapy , Glucagon-Like Peptide 2/agonists , Intestinal Mucosa/drug effects , Lapatinib/toxicity , Protein Kinase Inhibitors/toxicity , Animals , Antidiarrheals/chemistry , Diarrhea/chemically induced , Diarrhea/pathology , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...