Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Life (Basel) ; 13(2)2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36836796

ABSTRACT

The use of herbal medicines in recent decades has increased because their side effects are considered lower than conventional medicine. Unani herbal medicines are often used in Southern Asia. These herbal medicines are usually composed of several types of medicinal plants to treat various diseases. Research on herbal medicine usually focuses on insight into the composition of plants used as ingredients. However, in the present study, we extended to the level of metabolites that exist in the medicinal plants. This study aimed to develop a predictive model of the Unani therapeutic usage based on its constituent metabolites using deep learning and data-intensive science approaches. Furthermore, the best prediction model was then utilized to extract important metabolites for each therapeutic usage of Unani. In this study, it was observed that the deep neural network approach provided a much better prediction model than other algorithms including random forest and support vector machine. Moreover, according to the best prediction model using the deep neural network, we identified 118 important metabolites for nine therapeutic usages of Unani.

2.
Sensors (Basel) ; 22(24)2022 Dec 11.
Article in English | MEDLINE | ID: mdl-36560072

ABSTRACT

Grading is a decisive step in the successful distribution of mangoes to customers according to their preferences for the maturity index. A non-destructive method using near-infrared spectroscopy has historically been used to predict the maturity of fruit. This research classifies the maturity indexes in five classes using a new approach involving classification modeling and the application of fuzzy logic and indirect classification by measuring four parameters: total acidity, soluble solids content, firmness, and starch. These four quantitative parameters provide guidelines for maturity indexes and consumer preferences. The development of portable devices uses a neo spectra micro development kit with specifications for the spectrum of 1350-2500 nm. In terms of computer technology, this study uses a Raspberry Pi and Python programming. To improve the accuracy performance, preprocessing is carried out using 12 spectral transformation operators. Next, these operators are collected and combined to achieve optimal performance. The performance of the classification model with direct and indirect approaches is then compared. Ultimately, classification of the direct approach with preprocessing using linear discriminant analysis offered an accuracy of 91.43%, and classification of the indirect approach using partial least squares with fuzzy logic had an accuracy of 95.7%.


Subject(s)
Mangifera , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Fuzzy Logic , Fruit/chemistry , Least-Squares Analysis
3.
Antibiotics (Basel) ; 11(9)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36139978

ABSTRACT

Jamu is the traditional Indonesian herbal medicine system that is considered to have many benefits such as serving as a cure for diseases or maintaining sound health. A Jamu medicine is generally made from a mixture of several herbs. Natural antibiotics can provide a way to handle the problem of antibiotic resistance. This research aims to discover the potential of herbal plants as natural antibiotic candidates based on a machine learning approach. Our input data consists of a list of herbal formulas with plants as their constituents. The target class corresponds to bacterial diseases that can be cured by herbal formulas. The best model has been observed by implementing the Random Forest (RF) algorithm. For 10-fold cross-validations, the maximum accuracy, recall, and precision are 91.10%, 91.10%, and 90.54% with standard deviations 1.05, 1.05, and 1.48, respectively, which imply that the model obtained is good and robust. This study has shown that 14 plants can be potentially used as natural antibiotic candidates. Furthermore, according to scientific journals, 10 of the 14 selected plants have direct or indirect antibacterial activity.

4.
Life (Basel) ; 11(8)2021 Aug 23.
Article in English | MEDLINE | ID: mdl-34440610

ABSTRACT

BACKGROUND: We performed in silico prediction of the interactions between compounds of Jamu herbs and human proteins by utilizing data-intensive science and machine learning methods. Verifying the proteins that are targeted by compounds of natural herbs will be helpful to select natural herb-based drug candidates. METHODS: Initially, data related to compounds, target proteins, and interactions between them were collected from open access databases. Compounds are represented by molecular fingerprints, whereas amino acid sequences are represented by numerical protein descriptors. Then, prediction models that predict the interactions between compounds and target proteins were constructed using support vector machine and random forest. RESULTS: A random forest model constructed based on MACCS fingerprint and amino acid composition obtained the highest accuracy. We used the best model to predict target proteins for 94 important Jamu compounds and assessed the results by supporting evidence from published literature and other sources. There are 27 compounds that can be validated by professional doctors, and those compounds belong to seven efficacy groups. CONCLUSION: By comparing the efficacy of predicted compounds and the relations of the targeted proteins with diseases, we found that some compounds might be considered as drug candidates.

5.
Mol Inform ; 36(12)2017 12.
Article in English | MEDLINE | ID: mdl-28682479

ABSTRACT

In order to obtain a better understanding why some Jamu formulas can be used to treat a specific disease, we performed metabolomic studies of Jamu by taking into consideration the biologically active compounds existing in plants used as Jamu ingredients. A thorough integration of information from omics is expected to provide solid evidence-based scientific rationales for the development of modern phytomedicines. This study focused on prediction of Jamu efficacy based on its component metabolites and also identification of important metabolites related to each efficacy group. Initially, we compared the performance of Support Vector Machines and Random Forest to predict the Jamu efficacy with three different data pre-processing approaches, such as no filtering, Single Filtering algorithm, and a combination of Single Filtering algorithm and feature selection using Regularized Random Forest. Both classifiers performed very well and according to 5-fold cross-validation results, the mean accuracy of Support Vector Machine with linear kernel was slightly better than Random Forest. It can be concluded that machine learning methods can successfully relate Jamu efficacy with metabolites. In addition, we extended our analysis by identifying important metabolites from the Random Forest model. The inTrees framework was used to extract the rules and to select important metabolites for each efficacy group. Overall, we identified 94 significant metabolites associated to 12 efficacy groups and many of them were validated by published literature and KNApSAcK Metabolite Activity database.


Subject(s)
Medicine, Traditional , Metabolome , Metabolomics , Plants, Medicinal/metabolism , Humans , Indonesia , Plants, Medicinal/chemistry
6.
BMC Bioinformatics ; 17(1): 520, 2016 Dec 07.
Article in English | MEDLINE | ID: mdl-27927171

ABSTRACT

BACKGROUND: The binary similarity and dissimilarity measures have critical roles in the processing of data consisting of binary vectors in various fields including bioinformatics and chemometrics. These metrics express the similarity and dissimilarity values between two binary vectors in terms of the positive matches, absence mismatches or negative matches. To our knowledge, there is no published work presenting a systematic way of finding an appropriate equation to measure binary similarity that performs well for certain data type or application. A proper method to select a suitable binary similarity or dissimilarity measure is needed to obtain better classification results. RESULTS: In this study, we proposed a novel approach to select binary similarity and dissimilarity measures. We collected 79 binary similarity and dissimilarity equations by extensive literature search and implemented those equations as an R package called bmeasures. We applied these metrics to quantify the similarity and dissimilarity between herbal medicine formulas belonging to the Indonesian Jamu and Japanese Kampo separately. We assessed the capability of binary equations to classify herbal medicine pairs into match and mismatch efficacies based on their similarity or dissimilarity coefficients using the Receiver Operating Characteristic (ROC) curve analysis. According to the area under the ROC curve results, we found Indonesian Jamu and Japanese Kampo datasets obtained different ranking of binary similarity and dissimilarity measures. Out of all the equations, the Forbes-2 similarity and the Variant of Correlation similarity measures are recommended for studying the relationship between Jamu formulas and Kampo formulas, respectively. CONCLUSIONS: The selection of binary similarity and dissimilarity measures for multivariate analysis is data dependent. The proposed method can be used to find the most suitable binary similarity and dissimilarity equation wisely for a particular data. Our finding suggests that all four types of matching quantities in the Operational Taxonomic Unit (OTU) table are important to calculate the similarity and dissimilarity coefficients between herbal medicine formulas. Also, the binary similarity and dissimilarity measures that include the negative match quantity d achieve better capability to separate herbal medicine pairs compared to equations that exclude d.


Subject(s)
Plants, Medicinal/classification , Cluster Analysis , Herbal Medicine/methods , Indonesia , Japan , ROC Curve
7.
Biomed Res Int ; 2014: 831751, 2014.
Article in English | MEDLINE | ID: mdl-24804251

ABSTRACT

Indonesia has the largest medicinal plant species in the world and these plants are used as Jamu medicines. Jamu medicines are popular traditional medicines from Indonesia and we need to systemize the formulation of Jamu and develop basic scientific principles of Jamu to meet the requirement of Indonesian Healthcare System. We propose a new approach to predict the relation between plant and disease using network analysis and supervised clustering. At the preliminary step, we assigned 3138 Jamu formulas to 116 diseases of International Classification of Diseases (ver. 10) which belong to 18 classes of disease from National Center for Biotechnology Information. The correlation measures between Jamu pairs were determined based on their ingredient similarity. Networks are constructed and analyzed by selecting highly correlated Jamu pairs. Clusters were then generated by using the network clustering algorithm DPClusO. By using matching score of a cluster, the dominant disease and high frequency plant associated to the cluster are determined. The plant to disease relations predicted by our method were evaluated in the context of previously published results and were found to produce around 90% successful predictions.


Subject(s)
Medicine, Traditional , Plants, Medicinal , Cluster Analysis , Databases, Factual , Humans , Indonesia
SELECTION OF CITATIONS
SEARCH DETAIL
...