Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Monit Assess ; 193(4): 230, 2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33772647

ABSTRACT

Vegetables are essential for a healthy diet in humans. However, vegetables can carry harmful metal(loid) contaminants such as As, Cd and Pb which are deleterious to health in the long term. It has been postulated that long-term heavy metal(loid) exposure by vegetable consumption is associated with chronic kidney disease of unknown aetiology (CKDu) that prevails in North Central Province of Sri Lanka. We performed a human health risk assessment to identify if there is any link between heavy metal(loid) exposure from vegetable consumption and the prevalence of CKDu. The study includes a survey of food consumption in CKDu-impacted areas and determination of the heavy metal(loid) contents of market vegetables. We found that Solanum tuberosum (potato) and Momordica charantia (bitter gourd) accumulated Pb to a greater extent than other vegetables and exceeded the permissible concentration for foodstuffs. The Cd content of Solanum melongena (Brinjal) also exceeded permissible levels. However, the As content was below permissible levels for all the vegetables tested. The weekly total heavy metal(loid) intake of Cd, As and Pb in vegetables in CKDu-impacted areas was lower than permissible limits. The consumption of an average amount of vegetables does not pose a chronic health risk to the consumers. There was no evidence of a link between the consumption of heavy metal(loid)s in vegetables and CKDu. Since, few vegetables showed marked heavy metal(loid) accumulation, periodical monitoring of heavy metal(loid) concentrations in vegetables will be beneficial for avoidance of future possible health risks.


Subject(s)
Metals, Heavy , Soil Pollutants , Environmental Monitoring , Humans , Metals, Heavy/analysis , Risk Assessment , Soil , Soil Pollutants/analysis , Sri Lanka , Vegetables
2.
Environ Pollut ; 246: 53-59, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30529941

ABSTRACT

Lead (Pb) contaminated soil is of particular concern for infants and children due to their susceptibility to exposure, fast metabolic rates and rapidly developing neuronal systems. Determining the bioaccessibility of Pb in soils is critical in human health risk assessments, which can vary due to different soil properties and sources of Pb contamination. In this study, the potential relationships between soil properties and Pb bioaccessibility from various Pb sources including Pb contamination from mining (specifically, Broken Hill), three shooting ranges, a smelter and two industry sites (pottery and battery), were investigated using the Relative Bioavailability Leaching Procedure (RBALP). We found the following: (1) CEC, TOC, sand and silt content, and total Pb were significantly different (p < 0.05) between the two particle size fractions of < 2 mm and < 250 µm; (2) EC, CEC and total Pb were significantly correlated to Pb bioaccessibility (p < 0.05); and (3) soil analyses based on source of Pb demonstrated a strongly significant relationship between Pb bioaccessibility and soil properties (CEC, EC, clay content and total Pb) for mining soils from Broken Hill (r2 = 0.86, p < 0.05, n = 18). These results demonstrated the influences of Pb contamination sources, soil properties and particle size fractions on Pb bioaccessibility as well as the prediction of Pb bioaccessibility using soil properties. The findings documented here will help in developing a predictive tool for human health risk assessment and the remediation of Pb contaminated soils.


Subject(s)
Environmental Exposure/analysis , Industrial Waste/analysis , Lead/chemistry , Lead/pharmacokinetics , Soil Pollutants/chemistry , Soil Pollutants/pharmacokinetics , Soil/chemistry , Biological Availability , Environmental Monitoring , Industry/classification , Lead/analysis , Particle Size , Risk Assessment , Soil Pollutants/analysis
3.
Environ Sci Technol ; 52(21): 12556-12562, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30351030

ABSTRACT

Soil lead (Pb) hazard level is contingent on bioavailability, but existing assays that estimate Pb bioavailability for human health risks are too expensive or otherwise inaccessible to many people that are impacted by Pb-contaminated soil. This study investigated the use of routine soil nutrient tests to estimate soil-Pb bioaccessibility as a surrogate measure of Pb bioavailability. A silt loam soil was spiked to a target concentration of 2000 mg Pb kg-1 with Pb(NO3)2 and amended with H3PO4 (varying P-to-Pb molar ratios) and KCl (Cl-to-P molar ratio of 2:5) to generate soils with similar total Pb concentrations but a range of Pb bioavailability (and bioaccessibility). Soils were extracted using Mehlich 3, Mehlich 1, Bray P1, Olsen, and  micronutrient (DTPA) methods, and the results were compared to U.S. Environmental Protection Agency method 1340 data as well as to extended X-ray absorption fine structure (EXAFS) spectroscopy. The Mehlich 3 and method 1340 treatment effect ratios were well-correlated ( r2 = 0.88, p ≤ 0.05), whereas Bray P1, DTPA, and Olsen results were more reflective of EXAFS data. Preliminary animal-feeding trials suggest that the Mehlich 3 is as effective as method 1340 at predicting the impact of P treatment on Pb relative bioavailability; however, both methods over-estimated the Pb hazard to mice in P-amended soil. Other routine soil tests that have heightened sensitivity to P amendment (e.g., Bray P1) may be promising candidates for Pb bioaccessibility assessment.


Subject(s)
Soil Pollutants , Soil , Animals , Biological Availability , Environmental Pollution , Humans , Lead , Mice
4.
Chemosphere ; 184: 27-42, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28578193

ABSTRACT

Lead (Pb) is a widespread heavy metal which is harmful to human health, especially to young children. To provide a human health risk assessment that is more relevant to real conditions, Pb bioavailability in soils is increasingly employed in the assessment procedure. Both in vivo and in vitro measurements for lead bioavailability are available. In vivo models are time- consuming and expensive, while in vitro models are rapid, economic, reproducible, and reliable while involving more uncertainties. Uncertainties in various measurements create difficulties in accurately predicting Pb bioavailability, resulting in the unnecessary remediation of sites. In this critical review, we utilised available data from in vivo and in vitro studies to identify the key parameters influencing the in vitro measurements, and presented uncertainties existing in Pb bioavailability measurements. Soil type, properties and metal content are reported to influence lead bioavailability; however, the differences in methods for assessing bioavailability and the differences in Pb source limit one's ability to conduct statistical analyses on influences of soil factors on Pb bioavailability. The information provided in the review is fundamentally useful for the measurement of bioavailability and risk assessment practices.


Subject(s)
Environmental Monitoring , Lead/analysis , Soil Pollutants/analysis , Soil/chemistry , Humans , Metals, Heavy , Risk Assessment
5.
Chemosphere ; 138: 422-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26151314

ABSTRACT

Soil plays a significant role in controlling the potential bioavailability of contaminants in the environment. In this study, eleven soils were used to investigate the relationship between soil properties and relative bioavailability (RB) of lead (Pb). To minimise the effect of source of Pb on in vivo bioavailability, uncontaminated study soils were spiked with 1500 mg Pb/kg soil and aged for 10-12 months prior to investigating the relationships between soil properties and in vivo RB of Pb using swine model. The biological responses to oral administration of Pb in aqueous phase or as spiked soils were compared by applying a two-compartment pharmacokinetic model to blood Pb concentration. The study revealed that RB of Pb from aged soils ranged from 30±9% to 83±7%. The very different RB of Pb in these soils was attributed to variations in the soils' physico-chemical properties. This was established using sorption studies showing: firstly, Freundlich partition coefficients that ranged from 21 to 234; and secondly, a strongly significant (R(2)=0.94, P<0.001) exponential relationship between RB and Freundlich partition coefficient (Kd). This simple exponential model can be used to predict relative bioavailability of Pb in contaminated soils. To the best of our knowledge, this is the first such model derived using sorption partition coefficient to predict the relative bioavailability of Pb.


Subject(s)
Lead/analysis , Soil Pollutants/analysis , Soil/chemistry , Animals , Biological Availability , Lead/blood , Lead/pharmacokinetics , Soil Pollutants/blood , Soil Pollutants/pharmacokinetics , Swine
6.
Environ Sci Pollut Res Int ; 22(12): 8979-88, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25249050

ABSTRACT

Aging is a time-dependent process that causes metal bioavailability to decrease with time. The current study investigated the bioavailability change of Pb in four contrasting soils over a time period until the Pb relative bioavailability (RB) levels achieved a steady state to assess the extent of the following: firstly, bioavailability change in each soil and secondly, correlation of these changes with the soil properties. Relative bioavailability of soils spiked with 1500 mg Pb/kg were measured in swine that were fed these soils, throughout an aging period (56 days) to investigate relationships between soil properties and in vivo bioavailability of Pb. Spiked soils were used to minimize the effect of varying sources of Pb on RB. The RB of Pb in GTA, IWA, and MLA decreased from their initial Pb RB values until a steady state RB of 34, 45, and 59 % was reached, respectively, by the 56th day. In contrast, however, to these RB decreases, NTA soil indicated no change in RB over the whole aging period of the experiment. The lack of change in RB in the NTA soil over time was attributed to it achieving a steady state RB within a very short time due to its comparatively high sorptive capacity (K d = 112).


Subject(s)
Lead/chemistry , Soil Pollutants/chemistry , Soil Pollutants/metabolism , Soil/chemistry , Swine , Animals , Biological Availability , Lead/metabolism , Soil Pollutants/blood , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...