Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 421: 126627, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34343881

ABSTRACT

The escalating loads of municipal solid waste (MSW) end up in open dumps and landfills, producing continuous flows of landfill leachate. The risk of incorporating highly toxic landfill leachate into environment is important to be evaluated and measured in order to facilitate decision making for landfill leachate management and treatment. Leachate pollution index (LPI) provides quantitative measures of the potential environmental pollution by landfill leachate and information about the environmental quality adjacent to a particular landfill. According to LPI values, most developing countries show high pollution potentials from leachate, mainly due to high organic waste composition and low level of waste management techniques. A special focus on leachate characterization studies with LPI and its integration to treatment, which has not been focused in previous reviews on landfill leachate, is given here. Further, the current review provides a summary related to leachate generation, composition, characterization, risk assessment and treatment together with challenges and perspectives in the sector with its focus to developing nations. Potential commercial and industrial applications of landfill leachate is discussed in the study to provide insights into its sustainable management which is original for the study.


Subject(s)
Refuse Disposal , Waste Management , Water Pollutants, Chemical , Solid Waste/analysis , Waste Disposal Facilities , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
2.
Environ Res ; 189: 109880, 2020 10.
Article in English | MEDLINE | ID: mdl-32979992

ABSTRACT

This study aims to treat nitrogen-rich landfill leachate from Karadiyana open dumpsite, Sri Lanka, through an integrated treatment train consists of an anammox process, Municipal Solid Waste derived biochar column followed by a biochar embedded subsurface constructed wetland. Characterization of leachate was done and the leachate pollution index (LPI) was estimated. Meanwhile, leachate was treated through a treatment system comprising an anammox reactor having 140 mm diameter and 250 mm height, a biochar reactor having the same dimensions with 1.3 kg of MSW biochar, and a laboratory-scale constructed wetland of 1 × 0.3 × 0.45 m. The influent and effluent quality was assessed for the samples taken in 24 h intervals. The analysis indicated that the leachate was high in COD (4000-14,000 mg/L), ammonia (760-900 mg/L), nitrate (60-126 mg/L), and phosphorus (33-66 mg/L). Ammonia and nitrite were removed 94 and 99% by anammox unit, respectively. Nitrate, phosphate, COD and conductivity were significantly removed by the constructed wetland system in 78, 70, 65 and 61%, respectively, whereas biochar barricades extended support for removal of the contaminants and color. The combined treatment system demonstrated treatment efficiencies as 100% of ammonia, 98.7% of nitrite, 98.2% of nitrate, 80.9% of phosphate, 79.7% of COD, and 69.9% of conductivity. Thus, it can be concluded that the anammox, combined with biochar embedded treatment train is promising to treat landfill leachate, having a high pollutant index.


Subject(s)
Water Pollutants, Chemical , Bioreactors , Charcoal , Nitrogen , Oxidation-Reduction , Solid Waste , Sri Lanka , Wetlands
SELECTION OF CITATIONS
SEARCH DETAIL
...