Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 10: 2738, 2019.
Article in English | MEDLINE | ID: mdl-31866960

ABSTRACT

The Bay of Bengal (BoB) is the largest bay in the world and presents a unique marine environment that is subjected to severe weather, a distinct hydrographic regime and a large anthropogenic footprint. Despite these features and the BoB's overall economic significance, this ecosystem and its microbiome remain among the most underexplored in the world. In this study, amplicon-based microbial profiling was used to assess the bacterial, archaeal, and micro-eukaryotic content of unperturbed planktonic and biofilm/biofouling communities within the BoB. Planktonic microbial communities were collected during the Southwest monsoon season from surface (2 m), subsurface (75 m), and deep-sea (1000 m) waters from six south-central BoB locations and were compared to concomitant mature biofouling communities from photic-zone subsurface moorings (∼75 m). The results demonstrated vertical stratification of all planktonic communities with geographic variations disappearing in the deep-sea environment. Planktonic microbial diversity was found to be driven by different members of the community, with the most dominant phylotypes driving the diversity of the photic zone and rarer species playing a more influential role within the deep-sea. Geographic variability was not observed in the co-located biofouling microbiomes, but community composition and variability was found to be driven by depth and the presence of macro-fouling and photosynthetic organisms. Overall, these results provide much needed baselines for longitudinal assessments that can be used to monitor the health and evolution of this dynamic and critically important marine environment.

2.
Genome Announc ; 6(20)2018 May 17.
Article in English | MEDLINE | ID: mdl-29773633

ABSTRACT

Vibrio campbellii is a pathogen of aquatic animals and has been proposed as a bacterial partner in the formation of bioluminescent milky seas. We present here the complete genome sequences assembled from Illumina and Oxford Nanopore data for two bioluminescent Vibrio campbellii strains (BoB-53 and BoB-90) isolated from biofouled moorings in the Bay of Bengal.

SELECTION OF CITATIONS
SEARCH DETAIL
...