Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967641

ABSTRACT

We implemented isosteric replacement of sulfur to selenium in a novel thiosemicarbazone (PPTP4c4mT) to create a selenosemicarbazone (PPTP4c4mSe) that demonstrates potentiated anticancer efficacy and selectivity. Their design specifically incorporated cyclohexyl and styryl moieties to sterically inhibit the approach of their Fe(III) complexes to the oxy-myoglobin heme plane. Importantly, in contrast to the Fe(III) complexes of the clinically trialed thiosemicarbazones Triapine, COTI-2, and DpC, the Fe(III) complexes of PPTP4c4mT and PPTP4c4mSe did not induce detrimental oxy-myoglobin oxidation. Furthermore, PPTP4c4mSe demonstrated more potent antiproliferative activity than the homologous thiosemicarbazone, PPTP4c4mT, with their selectivity being superior or similar, respectively, to the clinically trialed thiosemicarbazone, COTI-2. An advantageous property of the selenosemicarbazone Zn(II) complexes relative to their thiosemicarbazone analogues was their greater transmetalation to Cu(II) complexes in lysosomes. This latter effect probably promoted their antiproliferative activity. Both ligands down-regulated multiple key receptors that display inter-receptor cooperation that leads to aggressive and resistant breast cancer.

3.
Chem Sci ; 15(3): 974-990, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38239703

ABSTRACT

The di-2-pyridylthiosemicarbazone (DpT) analogs demonstrate potent and selective anti-proliferative activity against human tumors. The current investigation reports the synthesis and chemical and biological characterization of the Fe(iii), Co(iii), Ni(ii), Cu(ii), Zn(ii), Ga(iii), and Pd(ii) complexes of the promising second generation DpT analog, di-2-pyridylketone-4-ethyl-4-methyl-3-thiosemicarbazone (Dp4e4mT). These studies demonstrate that the Dp4e4mT Co(iii), Ni(ii), and Pd(ii) complexes display distinct biological activity versus those with Cu(ii), Zn(ii), and Ga(iii) regarding anti-proliferative efficacy against cancer cells and a detrimental off-target effect involving oxidation of oxy-myoglobin (oxy-Mb) and oxy-hemoglobin (oxy-Hb). With regards to anti-proliferative activity, the Zn(ii) and Ga(iii) Dp4e4mT complexes demonstrate facile transmetallation with Cu(ii), resulting in efficacy against tumor cells that is strikingly similar to the Dp4e4mT Cu(ii) complex (IC50: 0.003-0.006 µM and 72 h). Relative to the Zn(ii) and Ga(iii) Dp4e4mT complexes, the Dp4e4mT Ni(ii) complex demonstrates kinetically slow transmetallation with Cu(ii) and intermediate anti-proliferative effects (IC50: 0.018-0.076 µM after 72 h). In contrast, the Co(iii) and Pd(ii) complexes demonstrate poor anti-proliferative activity (IC50: 0.262-1.570 µM after 72 h), probably due to a lack of transmetallation with Cu(ii). The poor efficacy of the Dp4e4mT Co(iii), Ni(ii), and Pd(ii) complexes to transmetallate with Fe(iii) markedly suppresses the oxidation of oxy-Mb and oxy-Hb. In contrast, the 2 : 1 Dp4e4mT: Cu(ii), Zn(ii), and Ga(iii) complexes demonstrate facile reactions with Fe(iii), leading to the redox active Dp4e4mT Fe(iii) complex and oxy-Mb and oxy-Hb oxidation. This study demonstrates the key role of differential transmetallation of Dp4e4mT complexes that has therapeutic ramifications for their use as anti-cancer agents.

4.
J Med Chem ; 66(22): 15453-15476, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37922410

ABSTRACT

The di-2-pyridylketone thiosemicarbazones demonstrated marked anticancer efficacy, prompting progression of DpC to clinical trials. However, DpC induced deleterious oxy-myoglobin oxidation, stifling development. To address this, novel substituted phenyl thiosemicarbazone (PPP4pT) analogues and their Fe(III), Cu(II), and Zn(II) complexes were prepared. The PPP4pT analogues demonstrated potent antiproliferative activity (IC50: 0.009-0.066 µM), with the 1:1 Cu:L complexes showing the greatest efficacy. Substitutions leading to decreased redox potential of the PPP4pT:Cu(II) complexes were associated with higher antiproliferative activity, while increasing potential correlated with increased redox activity. Surprisingly, there was no correlation between redox activity and antiproliferative efficacy. The PPP4pT:Fe(III) complexes attenuated oxy-myoglobin oxidation significantly more than the clinically trialed thiosemicarbazones, Triapine, COTI-2, and DpC, or earlier thiosemicarbazone series. Incorporation of phenyl- and styryl-substituents led to steric blockade, preventing approach of the PPP4pT:Fe(III) complexes to the heme plane and its oxidation. The 1:1 Cu(II):PPP4pT complexes were inert to transmetalation and did not induce oxy-myoglobin oxidation.


Subject(s)
Antineoplastic Agents , Thiosemicarbazones , Myoglobin , Ferric Compounds , Drug Screening Assays, Antitumor , Structure-Activity Relationship , Thiosemicarbazones/pharmacology , Oxidation-Reduction , Antineoplastic Agents/pharmacology , Copper
5.
Pharmacol Res ; 173: 105889, 2021 11.
Article in English | MEDLINE | ID: mdl-34536548

ABSTRACT

Iron is an indispensable requirement for essential biological processes in cancer cells. Due to the greater proliferation of neoplastic cells, their demand for iron is considerably higher relative to normal cells, making them highly susceptible to iron depletion. Understanding this sensitive relationship led to research exploring the effect of iron chelation therapy for cancer treatment. The classical iron-binding ligand, desferrioxamine (DFO), has demonstrated effective anti-proliferative activity against many cancer-types, particularly neuroblastoma tumors, and has the surprising activity of down-regulating the potent oncogene, N-myc, which is a major oncogenic driver in neuroblastoma. Even more significant is the ability of DFO to simultaneously up-regulate the potent metastasis suppressor, N-myc downstream-regulated gene-1 (NDRG1), which plays a plethora of roles in suppressing a variety of oncogenic signaling pathways. However, DFO suffers the disadvantage of demonstrating poor membrane permeability and short plasma half-life, requiring administration by prolonged subcutaneous or intravenous infusions. Considering this, the specifically designed di-2-pyridylketone thiosemicarbazone (DpT) series of metal-binding ligands was developed in our laboratory. The lead agent from the first generation DpT series, di-2-pyridylketone-4,4-dimethyl-3-thiosemicarbazone (Dp44mT), showed exceptional anti-cancer properties compared to DFO. However, it exhibited cardiotoxicity in mouse models at higher dosages. Therefore, a second generation of agents was developed with the lead compound being di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) that progressed to Phase I clinical trials. Importantly, DpC showed better anti-proliferative activity than Dp44mT and no cardiotoxicity, demonstrating effective anti-cancer activity against neuroblastoma tumors in vivo.


Subject(s)
Iron Chelating Agents/therapeutic use , Neuroblastoma/drug therapy , Animals , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Genes, myc , Humans , Iron Chelating Agents/pharmacology , Neuroblastoma/genetics , Neuroblastoma/pathology , Oncogenes , Therapies, Investigational , Tumor Suppressor Proteins/genetics , Up-Regulation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...