Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 36(12): 6027-6037, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947981

ABSTRACT

Thermal annealing is the most common postdeposition technique used to crystallize antimony selenide (Sb2Se3) thin films. However, due to slow processing speeds and a high energy cost, it is incompatible with the upscaling and commercialization of Sb2Se3 for future photovoltaics. Herein, for the first time, a fast-annealing technique that uses millisecond light pulses to deliver energy to the sample is adapted to cure thermally evaporated Sb2Se3 films. This study demonstrates how photonic curing (PC) conditions affect the outcome of Sb2Se3 phase conversion from amorphous to crystalline by evaluating the films' crystalline, morphological, and optical properties. We show that Sb2Se3 is readily converted under a variety of different conditions, but the zone where suitable films for optoelectronic applications are obtained is a small region of the parameter space. Sb2Se3 annealing with short pulses (<3 ms) shows significant damage to the sample, while using longer pulses (>5 ms) and a 4-5 J cm-2 radiant energy produces (211)- and (221)-oriented crystalline Sb2Se3 with minimal to no damage to the sample. A proof-of-concept photonically cured Sb2Se3 photovoltaic device is demonstrated. PC is a promising annealing method for large-area, high-throughput annealing of Sb2Se3 with various potential applications in Sb2Se3 photovoltaics.

2.
Int Immunopharmacol ; 103: 108433, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34922248

ABSTRACT

Nanosized drug carriers have received a major attention in cancer therapeutics and theranostics. The immuno-nanomedicine is a combination of monoclonal antibody (mAb)/mAb-drug-nanoparticles. The immuno-nanomedicine offers a promising strategy to target cancer cells. However, the understating of nanotechnology, cancer biology, immunomedicine, and nanoparticle surface chemistry has provided a better clue to prepare the effective immuno-nanomedicine for cancer therapy. Moreover, the selection of nanoparticles type and its composition is essential for development of efficient drug delivery system (DDS) to target the cancer cell site. Immuno-nanomedicine works in the ligand-receptor binding mechanism through the interaction of mAb conjugated nanoparticles and specific antigen over expressed on target cancer cells. Therefore, the selection of specific receptors in the cancer cell and their ligand is important to prepare the active immuno-nanomedicines. Moreover, the factors such as drug loading, entrapment efficiency, size, shape, and ligand conjugation of a nanocarrier are considered as major factors for a better cancer cell, internalization, drug release, and cancer cell ablation. The target-based over-expression of antigen, mAb is engineered and conjugated with nanoparticles for successful targeting of the cancer cells without causing adverse effects to normal cells. Therefore, this review analyzed the fundamental factors in the immuno-nanomedicine for breast cancer and its technical challenges in the fabrication of the antibody alone/and drug conjugated nanoparticles.


Subject(s)
Breast Neoplasms/drug therapy , Antibodies, Monoclonal/therapeutic use , Cell Line, Tumor , Drug Carriers/chemistry , Drug Delivery Systems , Drug Liberation , Female , Humans , Nanomedicine , Nanoparticles/chemistry , Nanotechnology , Neoplasms/drug therapy , Precision Medicine
3.
Mar Drugs ; 19(9)2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34564146

ABSTRACT

Marine algae are rich in bioactive nutraceuticals (e.g., carbohydrates, proteins, minerals, fatty acids, antioxidants, and pigments). Biotic (e.g., plants, microorganisms) and abiotic factors (e.g., temperature, pH, salinity, light intensity) contribute to the production of primary and secondary metabolites by algae. Easy, profitable, and sustainable recovery methods include novel solid-liquid and liquid-liquid extraction techniques (e.g., supercritical, high pressure, microwave, ultrasound, enzymatic). The spectacular findings of algal-mediated synthesis of nanotheranostics has attracted further interest because of the availability of microalgae-based natural bioactive therapeutic compounds and the cost-effective commercialization of stable microalgal drugs. Algal extracts can serve as stabilizing/capping and reducing agents for the synthesis of thermodynamically stable nanoparticles (NPs). Different types of nanotherapeutics have been synthesized using physical, chemical, and biological methods. Marine algae are a fascinating source of lead theranostics compounds, and the development of nanotheranostics has been linked to enhanced drug efficacy and safety. Indeed, algae are remarkable nanobiofactories, and their pragmatic properties reside in their (i) ease of handling; (ii) capacity to absorb/accumulate inorganic metallic ions; (iii) cost-effectiveness; and (iv) capacity of eco-friendly, rapid, and healthier synthesis of NPs. Preclinical and clinical trials shall enable to really define effective algal-based nanotherapies. This review aims to provide an overview of the main algal compounds that are nutraceuticals and that can be extracted and purified for nanotheranostic purposes.


Subject(s)
Biological Products/metabolism , Chlorophyta/metabolism , Phaeophyceae/metabolism , Rhodophyta/metabolism , Seaweed/metabolism , Animals , Biological Products/chemistry , Biological Products/pharmacology , Humans , Nanomedicine
SELECTION OF CITATIONS
SEARCH DETAIL
...