Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 82(14): 2610-2624, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35294525

ABSTRACT

CD70 is highly expressed in renal cell carcinoma (RCC), with limited expression in normal tissue, making it an attractive CAR T target for an immunogenic solid tumor indication. Here we generated and characterized a panel of anti-CD70 single-chain fragment variable (scFv)-based CAR T cells. Despite the expression of CD70 on T cells, production of CAR T cells from a subset of scFvs with potent in vitro activity was achieved. Expression of CD70 CARs masked CD70 detection in cis and provided protection from CD70 CAR T cell-mediated fratricide. Two distinct classes of CAR T cells were identified with differing memory phenotype, activation status, and cytotoxic activity. Epitope mapping revealed that the two classes of CARs bind unique regions of CD70. CD70 CAR T cells displayed robust antitumor activity against RCC cell lines and patient-derived xenograft mouse models. Tissue cross-reactivity studies identified membrane staining in lymphocytes, thus matching the known expression pattern of CD70. In a cynomolgus monkey CD3-CD70 bispecific toxicity study, expected findings related to T-cell activation and elimination of CD70-expressing cells were observed, including cytokine release and loss of cellularity in lymphoid tissues. Finally, highly functional CD70 allogeneic CAR T cells were produced at large scale through elimination of the T-cell receptor by TALEN-based gene editing. Taken together, these efficacy and safety data support the evaluation of CD70 CAR T cells for the treatment of RCC and has led to the advancement of an allogeneic CD70 CAR T-cell candidate into phase I clinical trials. SIGNIFICANCE: These findings demonstrate the efficacy and safety of fratricide-resistant, allogeneic anti-CD70 CAR T cells targeting renal cell carcinoma and the impact of CAR epitope on functional activity. See related commentary by Adotévi and Galaine, p. 2517.


Subject(s)
Carcinoma, Renal Cell , Hematopoietic Stem Cell Transplantation , Kidney Neoplasms , Animals , CD27 Ligand , Carcinoma, Renal Cell/pathology , Cell Line, Tumor , Humans , Immunotherapy, Adoptive , Kidney Neoplasms/pathology , Macaca fascicularis , Mice , T-Lymphocytes/metabolism , Xenograft Model Antitumor Assays
2.
Nat Chem Biol ; 18(2): 216-225, 2022 02.
Article in English | MEDLINE | ID: mdl-34969970

ABSTRACT

Chimeric antigen receptor (CAR)-T cells represent a major breakthrough in cancer therapy, wherein a patient's own T cells are engineered to recognize a tumor antigen, resulting in activation of a local cytotoxic immune response. However, CAR-T cell therapies are currently limited to the treatment of B cell cancers and their effectiveness is hindered by resistance from antigen-negative tumor cells, immunosuppression in the tumor microenvironment, eventual exhaustion of T cell immunologic functions and frequent severe toxicities. To overcome these problems, we have developed a novel class of CAR-T cells engineered to express an enzyme that activates a systemically administered small-molecule prodrug in situ at a tumor site. We show that these synthetic enzyme-armed killer (SEAKER) cells exhibit enhanced anticancer activity with small-molecule prodrugs, both in vitro and in vivo in mouse tumor models. This modular platform enables combined targeting of cellular and small-molecule therapies to treat cancers and potentially a variety of other diseases.


Subject(s)
Antineoplastic Agents/therapeutic use , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Drug Delivery Systems , Female , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Neoplasms/therapy , Neoplasms, Experimental , Prodrugs , Receptors, Chimeric Antigen , T-Lymphocytes , Tumor Microenvironment , Xenograft Model Antitumor Assays
3.
Cancer Immunol Res ; 8(6): 732-742, 2020 06.
Article in English | MEDLINE | ID: mdl-32213625

ABSTRACT

Although clinical responses with CD19-targeting chimeric antigen receptor (CAR) T-cell treatment have been observed in patients with certain hematologic malignancies, high rates of disease relapse highlight the necessity to understand and improve mechanisms of CAR T-cell failure. Because T-cell dysfunction is thought to contribute to CAR T-cell treatment failure, understanding what mechanisms drive T cells into this dysfunctional state may aid optimal design of efficacious CAR T cells. Dysfunctional CAR T cells have been characterized as having upregulated inhibitory receptors and decreased cytolytic capabilities. Previous studies have identified a role for sustained CAR CD3ζ signaling in CAR T-cell dysfunction. Here, we demonstrate a mechanism that drives dysfunction in CAR T cells through excessive costimulation. Fully activated CD19-targeted CAR T cells were rendered dysfunctional upon stimulation with both endogenous CD28 stimulation and CAR-mediated CD28 costimulation. Costimulation-driven dysfunction of CAR T cells was demonstrated in a syngeneic immunocompetent mouse model, in which CAR T cells were activated with signals 1 (CD3ζ), 2 (CD28), and 3 (IL12). Thus, we show that CAR T-cell dysfunction can be driven through excessive CD28 and 4-1BB costimulation.See related article by Drakes et al., p. 743.


Subject(s)
CD28 Antigens/immunology , Immunotherapy, Adoptive/methods , Interleukin-12/metabolism , Lymphocyte Activation/immunology , T-Lymphocytes/immunology , Thymoma/immunology , Thymus Neoplasms/immunology , Animals , Antigens, CD19/immunology , Antigens, CD19/metabolism , Apoptosis , CD28 Antigens/metabolism , Cell Proliferation , Cytokines , Humans , Mice , Mice, Inbred C57BL , Signal Transduction , T-Lymphocytes/metabolism , T-Lymphocytes/pathology , Thymoma/metabolism , Thymoma/pathology , Thymus Neoplasms/metabolism , Thymus Neoplasms/pathology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
4.
Cell Rep ; 23(7): 2130-2141, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29768210

ABSTRACT

Chimeric antigen receptor (CAR) T cell therapy has proven clinically beneficial against B cell acute lymphoblastic leukemia and non-Hodgkin's lymphoma. However, suboptimal clinical outcomes have been associated with decreased expansion and persistence of adoptively transferred CAR T cells, antigen-negative relapses, and impairment by an immunosuppressive tumor microenvironment. Improvements in CAR T cell design are required to enhance clinical efficacy, as well as broaden the applicability of this technology. Here, we demonstrate that interleukin-18 (IL-18)-secreting CAR T cells exhibit enhanced in vivo expansion and persistence and significantly increase long-term survival in syngeneic mouse models of both hematological and solid malignancies. In addition, we demonstrate that IL-18-secreting CAR T cells are capable of modulating the tumor microenvironment, as well as enhancing an effective endogenous anti-tumor immune response. IL-18-secreting CAR T cells represent a promising strategy to enhance the clinical outcomes of adoptive T cell therapy.


Subject(s)
Antineoplastic Agents/pharmacology , Immune System/metabolism , Immunotherapy , Neoplasms/drug therapy , T-Lymphocytes/immunology , Animals , Antineoplastic Agents/therapeutic use , Autocrine Communication/drug effects , B-Lymphocytes/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Models, Animal , Humans , Immune System/drug effects , Immunotherapy, Adoptive , Interleukin-18/metabolism , Mice, Inbred C57BL , Mice, SCID , Neoplasms/immunology , Neoplasms/pathology , Signal Transduction/drug effects , T-Lymphocytes/drug effects , Tumor Microenvironment/drug effects , Xenograft Model Antitumor Assays
5.
Stem Cell Reports ; 3(2): 219-26, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25254335

ABSTRACT

Pathogenic de novo mutations increase with fathers' age and could be amplified through competition between genetically distinct subpopulations of spermatogonial stem cells (SSCs). Here, we tested the fitness of SSCs bearing wild-type human FGFR2 or an Apert syndrome mutant, FGFR2 (S252W), to provide experimental evidence for SSC competition. The S252W allele conferred enhanced FGFR2-mediated signaling, particularly at very low concentrations of ligand, and also subtle changes in gene expression. Mutant SSCs exhibited improved competitiveness in vitro and increased stem cell activity in vivo upon transplantation. The fitness advantage in vitro only occurred in low concentrations of fibroblast growth factor (FGF), was independent of FGF-driven proliferation, and was accompanied by increased response to glial cell line-derived neurotrophic factor (GDNF). Our studies provide experimental evidence of enhanced stem cell fitness in SSCs bearing a paternal age-associated mutation. Our model will be useful for interrogating other candidate mutations in the future to reveal mechanisms of disease risk.


Subject(s)
Receptor, Fibroblast Growth Factor, Type 2/genetics , Stem Cells/cytology , Alleles , Animals , Cells, Cultured , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Paternal Age , Polymorphism, Single Nucleotide , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Spermatogonia/cytology , Stem Cell Transplantation , Testis/metabolism
6.
Cell ; 155(5): 1141-53, 2013 Nov 21.
Article in English | MEDLINE | ID: mdl-24267893

ABSTRACT

Drosophila hematopoietic progenitor maintenance involves both near neighbor and systemic interactions. This study shows that olfactory receptor neurons (ORNs) function upstream of a small set of neurosecretory cells that express GABA. Upon olfactory stimulation, GABA from these neurosecretory cells is secreted into the circulating hemolymph and binds to metabotropic GABAB receptors expressed on blood progenitors within the hematopoietic organ, the lymph gland. The resulting GABA signal causes high cytosolic Ca(2+), which is necessary and sufficient for progenitor maintenance. Thus, the activation of an odorant receptor is essential for blood progenitor maintenance, and consequently, larvae raised on minimal odor environments fail to sustain a pool of hematopoietic progenitors. This study links sensory perception and the effects of its deprivation on the integrity of the hematopoietic and innate immune systems in Drosophila. PAPERCLIP:


Subject(s)
Drosophila melanogaster/cytology , Drosophila melanogaster/physiology , Hemolymph/cytology , Stem Cells/cytology , Animals , Lymphoid Tissue/cytology , Neurons/metabolism , Olfactory Perception , Olfactory Receptor Neurons/metabolism , Signal Transduction , Stem Cells/metabolism , gamma-Aminobutyric Acid/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...